1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 #ifndef _KERNEL
  27 #include <strings.h>
  28 #include <limits.h>
  29 #include <assert.h>
  30 #include <security/cryptoki.h>
  31 #endif
  32 
  33 #include <sys/types.h>
  34 #include <sys/kmem.h>
  35 #include <modes/modes.h>
  36 #include <sys/crypto/common.h>
  37 #include <sys/crypto/impl.h>
  38 
  39 #if defined(__i386) || defined(__amd64)
  40 #include <sys/byteorder.h>
  41 #define UNALIGNED_POINTERS_PERMITTED
  42 #endif
  43 
  44 /*
  45  * Encrypt multiple blocks of data in CCM mode.  Decrypt for CCM mode
  46  * is done in another function.
  47  */
  48 int
  49 ccm_mode_encrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
  50     crypto_data_t *out, size_t block_size,
  51     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
  52     void (*copy_block)(uint8_t *, uint8_t *),
  53     void (*xor_block)(uint8_t *, uint8_t *))
  54 {
  55         size_t remainder = length;
  56         size_t need;
  57         uint8_t *datap = (uint8_t *)data;
  58         uint8_t *blockp;
  59         uint8_t *lastp;
  60         void *iov_or_mp;
  61         offset_t offset;
  62         uint8_t *out_data_1;
  63         uint8_t *out_data_2;
  64         size_t out_data_1_len;
  65         uint64_t counter;
  66         uint8_t *mac_buf;
  67 
  68         if (length + ctx->ccm_remainder_len < block_size) {
  69                 /* accumulate bytes here and return */
  70                 bcopy(datap,
  71                     (uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
  72                     length);
  73                 ctx->ccm_remainder_len += length;
  74                 ctx->ccm_copy_to = datap;
  75                 return (CRYPTO_SUCCESS);
  76         }
  77 
  78         lastp = (uint8_t *)ctx->ccm_cb;
  79         if (out != NULL)
  80                 crypto_init_ptrs(out, &iov_or_mp, &offset);
  81 
  82         mac_buf = (uint8_t *)ctx->ccm_mac_buf;
  83 
  84         do {
  85                 /* Unprocessed data from last call. */
  86                 if (ctx->ccm_remainder_len > 0) {
  87                         need = block_size - ctx->ccm_remainder_len;
  88 
  89                         if (need > remainder)
  90                                 return (CRYPTO_DATA_LEN_RANGE);
  91 
  92                         bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
  93                             [ctx->ccm_remainder_len], need);
  94 
  95                         blockp = (uint8_t *)ctx->ccm_remainder;
  96                 } else {
  97                         blockp = datap;
  98                 }
  99 
 100                 /*
 101                  * do CBC MAC
 102                  *
 103                  * XOR the previous cipher block current clear block.
 104                  * mac_buf always contain previous cipher block.
 105                  */
 106                 xor_block(blockp, mac_buf);
 107                 encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
 108 
 109                 /* ccm_cb is the counter block */
 110                 encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb,
 111                     (uint8_t *)ctx->ccm_tmp);
 112 
 113                 lastp = (uint8_t *)ctx->ccm_tmp;
 114 
 115                 /*
 116                  * Increment counter. Counter bits are confined
 117                  * to the bottom 64 bits of the counter block.
 118                  */
 119 #ifdef _LITTLE_ENDIAN
 120                 counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
 121                 counter = htonll(counter + 1);
 122 #else
 123                 counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask;
 124                 counter++;
 125 #endif  /* _LITTLE_ENDIAN */
 126                 counter &= ctx->ccm_counter_mask;
 127                 ctx->ccm_cb[1] =
 128                     (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
 129 
 130                 /*
 131                  * XOR encrypted counter block with the current clear block.
 132                  */
 133                 xor_block(blockp, lastp);
 134 
 135                 ctx->ccm_processed_data_len += block_size;
 136 
 137                 if (out == NULL) {
 138                         if (ctx->ccm_remainder_len > 0) {
 139                                 bcopy(blockp, ctx->ccm_copy_to,
 140                                     ctx->ccm_remainder_len);
 141                                 bcopy(blockp + ctx->ccm_remainder_len, datap,
 142                                     need);
 143                         }
 144                 } else {
 145                         crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
 146                             &out_data_1_len, &out_data_2, block_size);
 147 
 148                         /* copy block to where it belongs */
 149                         if (out_data_1_len == block_size) {
 150                                 copy_block(lastp, out_data_1);
 151                         } else {
 152                                 bcopy(lastp, out_data_1, out_data_1_len);
 153                                 if (out_data_2 != NULL) {
 154                                         bcopy(lastp + out_data_1_len,
 155                                             out_data_2,
 156                                             block_size - out_data_1_len);
 157                                 }
 158                         }
 159                         /* update offset */
 160                         out->cd_offset += block_size;
 161                 }
 162 
 163                 /* Update pointer to next block of data to be processed. */
 164                 if (ctx->ccm_remainder_len != 0) {
 165                         datap += need;
 166                         ctx->ccm_remainder_len = 0;
 167                 } else {
 168                         datap += block_size;
 169                 }
 170 
 171                 remainder = (size_t)&data[length] - (size_t)datap;
 172 
 173                 /* Incomplete last block. */
 174                 if (remainder > 0 && remainder < block_size) {
 175                         bcopy(datap, ctx->ccm_remainder, remainder);
 176                         ctx->ccm_remainder_len = remainder;
 177                         ctx->ccm_copy_to = datap;
 178                         goto out;
 179                 }
 180                 ctx->ccm_copy_to = NULL;
 181 
 182         } while (remainder > 0);
 183 
 184 out:
 185         return (CRYPTO_SUCCESS);
 186 }
 187 
 188 void
 189 calculate_ccm_mac(ccm_ctx_t *ctx, uint8_t *ccm_mac,
 190     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
 191 {
 192         uint64_t counter;
 193         uint8_t *counterp, *mac_buf;
 194         int i;
 195 
 196         mac_buf = (uint8_t *)ctx->ccm_mac_buf;
 197 
 198         /* first counter block start with index 0 */
 199         counter = 0;
 200         ctx->ccm_cb[1] = (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
 201 
 202         counterp = (uint8_t *)ctx->ccm_tmp;
 203         encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
 204 
 205         /* calculate XOR of MAC with first counter block */
 206         for (i = 0; i < ctx->ccm_mac_len; i++) {
 207                 ccm_mac[i] = mac_buf[i] ^ counterp[i];
 208         }
 209 }
 210 
 211 /* ARGSUSED */
 212 int
 213 ccm_encrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
 214     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
 215     void (*xor_block)(uint8_t *, uint8_t *))
 216 {
 217         uint8_t *lastp, *mac_buf, *ccm_mac_p, *macp;
 218         void *iov_or_mp;
 219         offset_t offset;
 220         uint8_t *out_data_1;
 221         uint8_t *out_data_2;
 222         size_t out_data_1_len;
 223         int i;
 224 
 225         if (out->cd_length < (ctx->ccm_remainder_len + ctx->ccm_mac_len)) {
 226                 return (CRYPTO_DATA_LEN_RANGE);
 227         }
 228 
 229         /*
 230          * When we get here, the number of bytes of payload processed
 231          * plus whatever data remains, if any,
 232          * should be the same as the number of bytes that's being
 233          * passed in the argument during init time.
 234          */
 235         if ((ctx->ccm_processed_data_len + ctx->ccm_remainder_len)
 236             != (ctx->ccm_data_len)) {
 237                 return (CRYPTO_DATA_LEN_RANGE);
 238         }
 239 
 240         mac_buf = (uint8_t *)ctx->ccm_mac_buf;
 241 
 242         if (ctx->ccm_remainder_len > 0) {
 243 
 244                 /* ccm_mac_input_buf is not used for encryption */
 245                 macp = (uint8_t *)ctx->ccm_mac_input_buf;
 246                 bzero(macp, block_size);
 247 
 248                 /* copy remainder to temporary buffer */
 249                 bcopy(ctx->ccm_remainder, macp, ctx->ccm_remainder_len);
 250 
 251                 /* calculate the CBC MAC */
 252                 xor_block(macp, mac_buf);
 253                 encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
 254 
 255                 /* calculate the counter mode */
 256                 lastp = (uint8_t *)ctx->ccm_tmp;
 257                 encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, lastp);
 258 
 259                 /* XOR with counter block */
 260                 for (i = 0; i < ctx->ccm_remainder_len; i++) {
 261                         macp[i] ^= lastp[i];
 262                 }
 263                 ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
 264         }
 265 
 266         /* Calculate the CCM MAC */
 267         ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
 268         calculate_ccm_mac(ctx, ccm_mac_p, encrypt_block);
 269 
 270         crypto_init_ptrs(out, &iov_or_mp, &offset);
 271         crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
 272             &out_data_1_len, &out_data_2,
 273             ctx->ccm_remainder_len + ctx->ccm_mac_len);
 274 
 275         if (ctx->ccm_remainder_len > 0) {
 276 
 277                 /* copy temporary block to where it belongs */
 278                 if (out_data_2 == NULL) {
 279                         /* everything will fit in out_data_1 */
 280                         bcopy(macp, out_data_1, ctx->ccm_remainder_len);
 281                         bcopy(ccm_mac_p, out_data_1 + ctx->ccm_remainder_len,
 282                             ctx->ccm_mac_len);
 283                 } else {
 284 
 285                         if (out_data_1_len < ctx->ccm_remainder_len) {
 286 
 287                                 size_t data_2_len_used;
 288 
 289                                 bcopy(macp, out_data_1, out_data_1_len);
 290 
 291                                 data_2_len_used = ctx->ccm_remainder_len
 292                                     - out_data_1_len;
 293 
 294                                 bcopy((uint8_t *)macp + out_data_1_len,
 295                                     out_data_2, data_2_len_used);
 296                                 bcopy(ccm_mac_p, out_data_2 + data_2_len_used,
 297                                     ctx->ccm_mac_len);
 298                         } else {
 299                                 bcopy(macp, out_data_1, out_data_1_len);
 300                                 if (out_data_1_len == ctx->ccm_remainder_len) {
 301                                         /* mac will be in out_data_2 */
 302                                         bcopy(ccm_mac_p, out_data_2,
 303                                             ctx->ccm_mac_len);
 304                                 } else {
 305                                         size_t len_not_used = out_data_1_len -
 306                                             ctx->ccm_remainder_len;
 307                                         /*
 308                                          * part of mac in will be in
 309                                          * out_data_1, part of the mac will be
 310                                          * in out_data_2
 311                                          */
 312                                         bcopy(ccm_mac_p,
 313                                             out_data_1 + ctx->ccm_remainder_len,
 314                                             len_not_used);
 315                                         bcopy(ccm_mac_p + len_not_used,
 316                                             out_data_2,
 317                                             ctx->ccm_mac_len - len_not_used);
 318 
 319                                 }
 320                         }
 321                 }
 322         } else {
 323                 /* copy block to where it belongs */
 324                 bcopy(ccm_mac_p, out_data_1, out_data_1_len);
 325                 if (out_data_2 != NULL) {
 326                         bcopy(ccm_mac_p + out_data_1_len, out_data_2,
 327                             block_size - out_data_1_len);
 328                 }
 329         }
 330         out->cd_offset += ctx->ccm_remainder_len + ctx->ccm_mac_len;
 331         ctx->ccm_remainder_len = 0;
 332         return (CRYPTO_SUCCESS);
 333 }
 334 
 335 /*
 336  * This will only deal with decrypting the last block of the input that
 337  * might not be a multiple of block length.
 338  */
 339 void
 340 ccm_decrypt_incomplete_block(ccm_ctx_t *ctx,
 341     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
 342 {
 343         uint8_t *datap, *outp, *counterp;
 344         int i;
 345 
 346         datap = (uint8_t *)ctx->ccm_remainder;
 347         outp = &((ctx->ccm_pt_buf)[ctx->ccm_processed_data_len]);
 348 
 349         counterp = (uint8_t *)ctx->ccm_tmp;
 350         encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
 351 
 352         /* XOR with counter block */
 353         for (i = 0; i < ctx->ccm_remainder_len; i++) {
 354                 outp[i] = datap[i] ^ counterp[i];
 355         }
 356 }
 357 
 358 /*
 359  * This will decrypt the cipher text.  However, the plaintext won't be
 360  * returned to the caller.  It will be returned when decrypt_final() is
 361  * called if the MAC matches
 362  */
 363 /* ARGSUSED */
 364 int
 365 ccm_mode_decrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
 366     crypto_data_t *out, size_t block_size,
 367     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
 368     void (*copy_block)(uint8_t *, uint8_t *),
 369     void (*xor_block)(uint8_t *, uint8_t *))
 370 {
 371         size_t remainder = length;
 372         size_t need;
 373         uint8_t *datap = (uint8_t *)data;
 374         uint8_t *blockp;
 375         uint8_t *cbp;
 376         uint64_t counter;
 377         size_t pt_len, total_decrypted_len, mac_len, pm_len, pd_len;
 378         uint8_t *resultp;
 379 #ifdef _LITTLE_ENDIAN
 380         uint8_t *p;
 381 #endif  /* _LITTLE_ENDIAN */
 382 
 383 
 384         pm_len = ctx->ccm_processed_mac_len;
 385 
 386         if (pm_len > 0) {
 387                 uint8_t *tmp;
 388                 /*
 389                  * all ciphertext has been processed, just waiting for
 390                  * part of the value of the mac
 391                  */
 392                 if ((pm_len + length) > ctx->ccm_mac_len) {
 393                         return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
 394                 }
 395                 tmp = (uint8_t *)ctx->ccm_mac_input_buf;
 396 
 397                 bcopy(datap, tmp + pm_len, length);
 398 
 399                 ctx->ccm_processed_mac_len += length;
 400                 return (CRYPTO_SUCCESS);
 401         }
 402 
 403         /*
 404          * If we decrypt the given data, what total amount of data would
 405          * have been decrypted?
 406          */
 407         pd_len = ctx->ccm_processed_data_len;
 408         total_decrypted_len = pd_len + length + ctx->ccm_remainder_len;
 409 
 410         if (total_decrypted_len >
 411             (ctx->ccm_data_len + ctx->ccm_mac_len)) {
 412                 return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
 413         }
 414 
 415         pt_len = ctx->ccm_data_len;
 416 
 417         if (total_decrypted_len > pt_len) {
 418                 /*
 419                  * part of the input will be the MAC, need to isolate that
 420                  * to be dealt with later.  The left-over data in
 421                  * ccm_remainder_len from last time will not be part of the
 422                  * MAC.  Otherwise, it would have already been taken out
 423                  * when this call is made last time.
 424                  */
 425                 size_t pt_part = pt_len - pd_len - ctx->ccm_remainder_len;
 426 
 427                 mac_len = length - pt_part;
 428 
 429                 ctx->ccm_processed_mac_len = mac_len;
 430                 bcopy(data + pt_part, ctx->ccm_mac_input_buf, mac_len);
 431 
 432                 if (pt_part + ctx->ccm_remainder_len < block_size) {
 433                         /*
 434                          * since this is last of the ciphertext, will
 435                          * just decrypt with it here
 436                          */
 437                         bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
 438                             [ctx->ccm_remainder_len], pt_part);
 439                         ctx->ccm_remainder_len += pt_part;
 440                         ccm_decrypt_incomplete_block(ctx, encrypt_block);
 441                         ctx->ccm_remainder_len = 0;
 442                         ctx->ccm_processed_data_len += pt_part;
 443                         return (CRYPTO_SUCCESS);
 444                 } else {
 445                         /* let rest of the code handle this */
 446                         length = pt_part;
 447                 }
 448         } else if (length + ctx->ccm_remainder_len < block_size) {
 449                         /* accumulate bytes here and return */
 450                 bcopy(datap,
 451                     (uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
 452                     length);
 453                 ctx->ccm_remainder_len += length;
 454                 ctx->ccm_copy_to = datap;
 455                 return (CRYPTO_SUCCESS);
 456         }
 457 
 458         do {
 459                 /* Unprocessed data from last call. */
 460                 if (ctx->ccm_remainder_len > 0) {
 461                         need = block_size - ctx->ccm_remainder_len;
 462 
 463                         if (need > remainder)
 464                                 return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
 465 
 466                         bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
 467                             [ctx->ccm_remainder_len], need);
 468 
 469                         blockp = (uint8_t *)ctx->ccm_remainder;
 470                 } else {
 471                         blockp = datap;
 472                 }
 473 
 474                 /* Calculate the counter mode, ccm_cb is the counter block */
 475                 cbp = (uint8_t *)ctx->ccm_tmp;
 476                 encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, cbp);
 477 
 478                 /*
 479                  * Increment counter.
 480                  * Counter bits are confined to the bottom 64 bits
 481                  */
 482 #ifdef _LITTLE_ENDIAN
 483                 counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
 484                 counter = htonll(counter + 1);
 485 #else
 486                 counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask;
 487                 counter++;
 488 #endif  /* _LITTLE_ENDIAN */
 489                 counter &= ctx->ccm_counter_mask;
 490                 ctx->ccm_cb[1] =
 491                     (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
 492 
 493                 /* XOR with the ciphertext */
 494                 xor_block(blockp, cbp);
 495 
 496                 /* Copy the plaintext to the "holding buffer" */
 497                 resultp = (uint8_t *)ctx->ccm_pt_buf +
 498                     ctx->ccm_processed_data_len;
 499                 copy_block(cbp, resultp);
 500 
 501                 ctx->ccm_processed_data_len += block_size;
 502 
 503                 ctx->ccm_lastp = blockp;
 504 
 505                 /* Update pointer to next block of data to be processed. */
 506                 if (ctx->ccm_remainder_len != 0) {
 507                         datap += need;
 508                         ctx->ccm_remainder_len = 0;
 509                 } else {
 510                         datap += block_size;
 511                 }
 512 
 513                 remainder = (size_t)&data[length] - (size_t)datap;
 514 
 515                 /* Incomplete last block */
 516                 if (remainder > 0 && remainder < block_size) {
 517                         bcopy(datap, ctx->ccm_remainder, remainder);
 518                         ctx->ccm_remainder_len = remainder;
 519                         ctx->ccm_copy_to = datap;
 520                         if (ctx->ccm_processed_mac_len > 0) {
 521                                 /*
 522                                  * not expecting anymore ciphertext, just
 523                                  * compute plaintext for the remaining input
 524                                  */
 525                                 ccm_decrypt_incomplete_block(ctx,
 526                                     encrypt_block);
 527                                 ctx->ccm_processed_data_len += remainder;
 528                                 ctx->ccm_remainder_len = 0;
 529                         }
 530                         goto out;
 531                 }
 532                 ctx->ccm_copy_to = NULL;
 533 
 534         } while (remainder > 0);
 535 
 536 out:
 537         return (CRYPTO_SUCCESS);
 538 }
 539 
 540 int
 541 ccm_decrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
 542     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
 543     void (*copy_block)(uint8_t *, uint8_t *),
 544     void (*xor_block)(uint8_t *, uint8_t *))
 545 {
 546         size_t mac_remain, pt_len;
 547         uint8_t *pt, *mac_buf, *macp, *ccm_mac_p;
 548         void *iov_or_mp;
 549         offset_t offset;
 550         uint8_t *out_data_1, *out_data_2;
 551         size_t out_data_1_len;
 552 
 553         pt_len = ctx->ccm_data_len;
 554 
 555         /* Make sure output buffer can fit all of the plaintext */
 556         if (out->cd_length < pt_len) {
 557                 return (CRYPTO_DATA_LEN_RANGE);
 558         }
 559 
 560         pt = ctx->ccm_pt_buf;
 561         mac_remain = ctx->ccm_processed_data_len;
 562         mac_buf = (uint8_t *)ctx->ccm_mac_buf;
 563 
 564         macp = (uint8_t *)ctx->ccm_tmp;
 565 
 566         while (mac_remain > 0) {
 567 
 568                 if (mac_remain < block_size) {
 569                         bzero(macp, block_size);
 570                         bcopy(pt, macp, mac_remain);
 571                         mac_remain = 0;
 572                 } else {
 573                         copy_block(pt, macp);
 574                         mac_remain -= block_size;
 575                         pt += block_size;
 576                 }
 577 
 578                 /* calculate the CBC MAC */
 579                 xor_block(macp, mac_buf);
 580                 encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
 581         }
 582 
 583         /* Calculate the CCM MAC */
 584         ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
 585         calculate_ccm_mac((ccm_ctx_t *)ctx, ccm_mac_p, encrypt_block);
 586 
 587         /* compare the input CCM MAC value with what we calculated */
 588         if (bcmp(ctx->ccm_mac_input_buf, ccm_mac_p, ctx->ccm_mac_len)) {
 589                 /* They don't match */
 590                 return (CRYPTO_INVALID_MAC);
 591         } else {
 592                 crypto_init_ptrs(out, &iov_or_mp, &offset);
 593                 crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
 594                     &out_data_1_len, &out_data_2, pt_len);
 595                 bcopy(ctx->ccm_pt_buf, out_data_1, out_data_1_len);
 596                 if (out_data_2 != NULL) {
 597                         bcopy((ctx->ccm_pt_buf) + out_data_1_len,
 598                             out_data_2, pt_len - out_data_1_len);
 599                 }
 600                 out->cd_offset += pt_len;
 601         }
 602         return (CRYPTO_SUCCESS);
 603 }
 604 
 605 int
 606 ccm_validate_args(CK_AES_CCM_PARAMS *ccm_param, boolean_t is_encrypt_init)
 607 {
 608         size_t macSize, nonceSize;
 609         uint8_t q;
 610         uint64_t maxValue;
 611 
 612         /*
 613          * Check the length of the MAC.  The only valid
 614          * lengths for the MAC are: 4, 6, 8, 10, 12, 14, 16
 615          */
 616         macSize = ccm_param->ulMACSize;
 617         if ((macSize < 4) || (macSize > 16) || ((macSize % 2) != 0)) {
 618                 return (CRYPTO_MECHANISM_PARAM_INVALID);
 619         }
 620 
 621         /* Check the nonce length.  Valid values are 7, 8, 9, 10, 11, 12, 13 */
 622         nonceSize = ccm_param->ulNonceSize;
 623         if ((nonceSize < 7) || (nonceSize > 13)) {
 624                 return (CRYPTO_MECHANISM_PARAM_INVALID);
 625         }
 626 
 627         /* q is the length of the field storing the length, in bytes */
 628         q = (uint8_t)((15 - nonceSize) & 0xFF);
 629 
 630 
 631         /*
 632          * If it is decrypt, need to make sure size of ciphertext is at least
 633          * bigger than MAC len
 634          */
 635         if ((!is_encrypt_init) && (ccm_param->ulDataSize < macSize)) {
 636                 return (CRYPTO_MECHANISM_PARAM_INVALID);
 637         }
 638 
 639         /*
 640          * Check to make sure the length of the payload is within the
 641          * range of values allowed by q
 642          */
 643         if (q < 8) {
 644                 maxValue = (1ULL << (q * 8)) - 1;
 645         } else {
 646                 maxValue = ULONG_MAX;
 647         }
 648 
 649         if (ccm_param->ulDataSize > maxValue) {
 650                 return (CRYPTO_MECHANISM_PARAM_INVALID);
 651         }
 652         return (CRYPTO_SUCCESS);
 653 }
 654 
 655 /*
 656  * Format the first block used in CBC-MAC (B0) and the initial counter
 657  * block based on formatting functions and counter generation functions
 658  * specified in RFC 3610 and NIST publication 800-38C, appendix A
 659  *
 660  * b0 is the first block used in CBC-MAC
 661  * cb0 is the first counter block
 662  *
 663  * It's assumed that the arguments b0 and cb0 are preallocated AES blocks
 664  *
 665  */
 666 static void
 667 ccm_format_initial_blocks(uchar_t *nonce, ulong_t nonceSize,
 668     ulong_t authDataSize, uint8_t *b0, ccm_ctx_t *aes_ctx)
 669 {
 670         uint64_t payloadSize;
 671         uint8_t t, q, have_adata = 0;
 672         size_t limit;
 673         int i, j, k;
 674         uint64_t mask = 0;
 675         uint8_t *cb;
 676 
 677         q = (uint8_t)((15 - nonceSize) & 0xFF);
 678         t = (uint8_t)((aes_ctx->ccm_mac_len) & 0xFF);
 679 
 680         /* Construct the first octet of b0 */
 681         if (authDataSize > 0) {
 682                 have_adata = 1;
 683         }
 684         b0[0] = (have_adata << 6) | (((t - 2)  / 2) << 3) | (q - 1);
 685 
 686         /* copy the nonce value into b0 */
 687         bcopy(nonce, &(b0[1]), nonceSize);
 688 
 689         /* store the length of the payload into b0 */
 690         bzero(&(b0[1+nonceSize]), q);
 691 
 692         payloadSize = aes_ctx->ccm_data_len;
 693         limit = 8 < q ? 8 : q;
 694 
 695         for (i = 0, j = 0, k = 15; i < limit; i++, j += 8, k--) {
 696                 b0[k] = (uint8_t)((payloadSize >> j) & 0xFF);
 697         }
 698 
 699         /* format the counter block */
 700 
 701         cb = (uint8_t *)aes_ctx->ccm_cb;
 702 
 703         cb[0] = 0x07 & (q-1); /* first byte */
 704 
 705         /* copy the nonce value into the counter block */
 706         bcopy(nonce, &(cb[1]), nonceSize);
 707 
 708         bzero(&(cb[1+nonceSize]), q);
 709 
 710         /* Create the mask for the counter field based on the size of nonce */
 711         q <<= 3;
 712         while (q-- > 0) {
 713                 mask |= (1ULL << q);
 714         }
 715 
 716 #ifdef _LITTLE_ENDIAN
 717         mask = htonll(mask);
 718 #endif
 719         aes_ctx->ccm_counter_mask = mask;
 720 
 721         /*
 722          * During calculation, we start using counter block 1, we will
 723          * set it up right here.
 724          * We can just set the last byte to have the value 1, because
 725          * even with the biggest nonce of 13, the last byte of the
 726          * counter block will be used for the counter value.
 727          */
 728         cb[15] = 0x01;
 729 }
 730 
 731 /*
 732  * Encode the length of the associated data as
 733  * specified in RFC 3610 and NIST publication 800-38C, appendix A
 734  */
 735 static void
 736 encode_adata_len(ulong_t auth_data_len, uint8_t *encoded, size_t *encoded_len)
 737 {
 738 #ifdef UNALIGNED_POINTERS_PERMITTED
 739         uint32_t        *lencoded_ptr;
 740 #ifdef _LP64
 741         uint64_t        *llencoded_ptr;
 742 #endif
 743 #endif  /* UNALIGNED_POINTERS_PERMITTED */
 744 
 745         if (auth_data_len < ((1ULL<<16) - (1ULL<<8))) {
 746                 /* 0 < a < (2^16-2^8) */
 747                 *encoded_len = 2;
 748                 encoded[0] = (auth_data_len & 0xff00) >> 8;
 749                 encoded[1] = auth_data_len & 0xff;
 750 
 751         } else if ((auth_data_len >= ((1ULL<<16) - (1ULL<<8))) &&
 752             (auth_data_len < (1ULL << 31))) {
 753                 /* (2^16-2^8) <= a < 2^32 */
 754                 *encoded_len = 6;
 755                 encoded[0] = 0xff;
 756                 encoded[1] = 0xfe;
 757 #ifdef UNALIGNED_POINTERS_PERMITTED
 758                 lencoded_ptr = (uint32_t *)&encoded[2];
 759                 *lencoded_ptr = htonl(auth_data_len);
 760 #else
 761                 encoded[2] = (auth_data_len & 0xff000000) >> 24;
 762                 encoded[3] = (auth_data_len & 0xff0000) >> 16;
 763                 encoded[4] = (auth_data_len & 0xff00) >> 8;
 764                 encoded[5] = auth_data_len & 0xff;
 765 #endif  /* UNALIGNED_POINTERS_PERMITTED */
 766 
 767 #ifdef _LP64
 768         } else {
 769                 /* 2^32 <= a < 2^64 */
 770                 *encoded_len = 10;
 771                 encoded[0] = 0xff;
 772                 encoded[1] = 0xff;
 773 #ifdef UNALIGNED_POINTERS_PERMITTED
 774                 llencoded_ptr = (uint64_t *)&encoded[2];
 775                 *llencoded_ptr = htonl(auth_data_len);
 776 #else
 777                 encoded[2] = (auth_data_len & 0xff00000000000000) >> 56;
 778                 encoded[3] = (auth_data_len & 0xff000000000000) >> 48;
 779                 encoded[4] = (auth_data_len & 0xff0000000000) >> 40;
 780                 encoded[5] = (auth_data_len & 0xff00000000) >> 32;
 781                 encoded[6] = (auth_data_len & 0xff000000) >> 24;
 782                 encoded[7] = (auth_data_len & 0xff0000) >> 16;
 783                 encoded[8] = (auth_data_len & 0xff00) >> 8;
 784                 encoded[9] = auth_data_len & 0xff;
 785 #endif  /* UNALIGNED_POINTERS_PERMITTED */
 786 #endif  /* _LP64 */
 787         }
 788 }
 789 
 790 /*
 791  * The following function should be call at encrypt or decrypt init time
 792  * for AES CCM mode.
 793  */
 794 int
 795 ccm_init(ccm_ctx_t *ctx, unsigned char *nonce, size_t nonce_len,
 796     unsigned char *auth_data, size_t auth_data_len, size_t block_size,
 797     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
 798     void (*xor_block)(uint8_t *, uint8_t *))
 799 {
 800         uint8_t *mac_buf, *datap, *ivp, *authp;
 801         size_t remainder, processed;
 802         uint8_t encoded_a[10]; /* max encoded auth data length is 10 octets */
 803         size_t encoded_a_len = 0;
 804 
 805         mac_buf = (uint8_t *)&(ctx->ccm_mac_buf);
 806 
 807         /*
 808          * Format the 1st block for CBC-MAC and construct the
 809          * 1st counter block.
 810          *
 811          * aes_ctx->ccm_iv is used for storing the counter block
 812          * mac_buf will store b0 at this time.
 813          */
 814         ccm_format_initial_blocks(nonce, nonce_len,
 815             auth_data_len, mac_buf, ctx);
 816 
 817         /* The IV for CBC MAC for AES CCM mode is always zero */
 818         ivp = (uint8_t *)ctx->ccm_tmp;
 819         bzero(ivp, block_size);
 820 
 821         xor_block(ivp, mac_buf);
 822 
 823         /* encrypt the nonce */
 824         encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
 825 
 826         /* take care of the associated data, if any */
 827         if (auth_data_len == 0) {
 828                 return (CRYPTO_SUCCESS);
 829         }
 830 
 831         encode_adata_len(auth_data_len, encoded_a, &encoded_a_len);
 832 
 833         remainder = auth_data_len;
 834 
 835         /* 1st block: it contains encoded associated data, and some data */
 836         authp = (uint8_t *)ctx->ccm_tmp;
 837         bzero(authp, block_size);
 838         bcopy(encoded_a, authp, encoded_a_len);
 839         processed = block_size - encoded_a_len;
 840         if (processed > auth_data_len) {
 841                 /* in case auth_data is very small */
 842                 processed = auth_data_len;
 843         }
 844         bcopy(auth_data, authp+encoded_a_len, processed);
 845         /* xor with previous buffer */
 846         xor_block(authp, mac_buf);
 847         encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
 848         remainder -= processed;
 849         if (remainder == 0) {
 850                 /* a small amount of associated data, it's all done now */
 851                 return (CRYPTO_SUCCESS);
 852         }
 853 
 854         do {
 855                 if (remainder < block_size) {
 856                         /*
 857                          * There's not a block full of data, pad rest of
 858                          * buffer with zero
 859                          */
 860                         bzero(authp, block_size);
 861                         bcopy(&(auth_data[processed]), authp, remainder);
 862                         datap = (uint8_t *)authp;
 863                         remainder = 0;
 864                 } else {
 865                         datap = (uint8_t *)(&(auth_data[processed]));
 866                         processed += block_size;
 867                         remainder -= block_size;
 868                 }
 869 
 870                 xor_block(datap, mac_buf);
 871                 encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
 872 
 873         } while (remainder > 0);
 874 
 875         return (CRYPTO_SUCCESS);
 876 }
 877 
 878 int
 879 ccm_init_ctx(ccm_ctx_t *ccm_ctx, char *param, int kmflag,
 880     boolean_t is_encrypt_init, size_t block_size,
 881     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
 882     void (*xor_block)(uint8_t *, uint8_t *))
 883 {
 884         int rv;
 885         CK_AES_CCM_PARAMS *ccm_param;
 886 
 887         if (param != NULL) {
 888                 ccm_param = (CK_AES_CCM_PARAMS *)param;
 889 
 890                 if ((rv = ccm_validate_args(ccm_param,
 891                     is_encrypt_init)) != 0) {
 892                         return (rv);
 893                 }
 894 
 895                 ccm_ctx->ccm_mac_len = ccm_param->ulMACSize;
 896                 if (is_encrypt_init) {
 897                         ccm_ctx->ccm_data_len = ccm_param->ulDataSize;
 898                 } else {
 899                         ccm_ctx->ccm_data_len =
 900                             ccm_param->ulDataSize - ccm_ctx->ccm_mac_len;
 901                         ccm_ctx->ccm_processed_mac_len = 0;
 902                 }
 903                 ccm_ctx->ccm_processed_data_len = 0;
 904 
 905                 ccm_ctx->ccm_flags |= CCM_MODE;
 906         } else {
 907                 rv = CRYPTO_MECHANISM_PARAM_INVALID;
 908                 goto out;
 909         }
 910 
 911         if (ccm_init(ccm_ctx, ccm_param->nonce, ccm_param->ulNonceSize,
 912             ccm_param->authData, ccm_param->ulAuthDataSize, block_size,
 913             encrypt_block, xor_block) != 0) {
 914                 rv = CRYPTO_MECHANISM_PARAM_INVALID;
 915                 goto out;
 916         }
 917         if (!is_encrypt_init) {
 918                 /* allocate buffer for storing decrypted plaintext */
 919 #ifdef _KERNEL
 920                 ccm_ctx->ccm_pt_buf = kmem_alloc(ccm_ctx->ccm_data_len,
 921                     kmflag);
 922 #else
 923                 ccm_ctx->ccm_pt_buf = malloc(ccm_ctx->ccm_data_len);
 924 #endif
 925                 if (ccm_ctx->ccm_pt_buf == NULL) {
 926                         rv = CRYPTO_HOST_MEMORY;
 927                 }
 928         }
 929 out:
 930         return (rv);
 931 }
 932 
 933 void *
 934 ccm_alloc_ctx(int kmflag)
 935 {
 936         ccm_ctx_t *ccm_ctx;
 937 
 938 #ifdef _KERNEL
 939         if ((ccm_ctx = kmem_zalloc(sizeof (ccm_ctx_t), kmflag)) == NULL)
 940 #else
 941         if ((ccm_ctx = calloc(1, sizeof (ccm_ctx_t))) == NULL)
 942 #endif
 943                 return (NULL);
 944 
 945         ccm_ctx->ccm_flags = CCM_MODE;
 946         return (ccm_ctx);
 947 }