1 /*
   2  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
   3  * Use is subject to license terms.
   4  */
   5 
   6 #pragma ident   "%Z%%M% %I%     %E% SMI"
   7 
   8 /*
   9  * The basic framework for this code came from the reference
  10  * implementation for MD5.  That implementation is Copyright (C)
  11  * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
  12  *
  13  * License to copy and use this software is granted provided that it
  14  * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
  15  * Algorithm" in all material mentioning or referencing this software
  16  * or this function.
  17  *
  18  * License is also granted to make and use derivative works provided
  19  * that such works are identified as "derived from the RSA Data
  20  * Security, Inc. MD5 Message-Digest Algorithm" in all material
  21  * mentioning or referencing the derived work.
  22  *
  23  * RSA Data Security, Inc. makes no representations concerning either
  24  * the merchantability of this software or the suitability of this
  25  * software for any particular purpose. It is provided "as is"
  26  * without express or implied warranty of any kind.
  27  *
  28  * These notices must be retained in any copies of any part of this
  29  * documentation and/or software.
  30  *
  31  * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1
  32  * standard, available at http://www.itl.nist.gov/div897/pubs/fip180-1.htm
  33  * Not as fast as one would like -- further optimizations are encouraged
  34  * and appreciated.
  35  */
  36 
  37 #include <sys/types.h>
  38 #include <sys/param.h>
  39 #include <sys/systm.h>
  40 #include <sys/sysmacros.h>
  41 #include <sys/sha1.h>
  42 #include <sys/sha1_consts.h>
  43 
  44 #ifndef _KERNEL
  45 #include <strings.h>
  46 #include <stdlib.h>
  47 #include <errno.h>
  48 #include <sys/systeminfo.h>
  49 #endif  /* !_KERNEL */
  50 
  51 static void Encode(uint8_t *, const uint32_t *, size_t);
  52 
  53 #if     defined(__sparc)
  54 
  55 #define SHA1_TRANSFORM(ctx, in) \
  56         SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \
  57                 (ctx)->state[3], (ctx)->state[4], (ctx), (in))
  58 
  59 static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t,
  60     SHA1_CTX *, const uint8_t *);
  61 
  62 #elif   defined(__amd64)
  63 
  64 #define SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1)
  65 #define SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \
  66                 (in), (num))
  67 
  68 void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks);
  69 
  70 #else
  71 
  72 #define SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in))
  73 
  74 static void SHA1Transform(SHA1_CTX *, const uint8_t *);
  75 
  76 #endif
  77 
  78 
  79 static uint8_t PADDING[64] = { 0x80, /* all zeros */ };
  80 
  81 /*
  82  * F, G, and H are the basic SHA1 functions.
  83  */
  84 #define F(b, c, d)      (((b) & (c)) | ((~b) & (d)))
  85 #define G(b, c, d)      ((b) ^ (c) ^ (d))
  86 #define H(b, c, d)      (((b) & (c)) | (((b)|(c)) & (d)))
  87 
  88 /*
  89  * ROTATE_LEFT rotates x left n bits.
  90  */
  91 
  92 #if     defined(__GNUC__) && defined(_LP64)
  93 static __inline__ uint64_t
  94 ROTATE_LEFT(uint64_t value, uint32_t n)
  95 {
  96         uint32_t t32;
  97 
  98         t32 = (uint32_t)value;
  99         return ((t32 << n) | (t32 >> (32 - n)));
 100 }
 101 
 102 #else
 103 
 104 #define ROTATE_LEFT(x, n)       \
 105         (((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n))))
 106 
 107 #endif
 108 
 109 #if     defined(__GNUC__) && (defined(__i386) || defined(__amd64))
 110 
 111 #define HAVE_BSWAP
 112 
 113 extern __inline__ uint32_t bswap(uint32_t value)
 114 {
 115         __asm__("bswap %0" : "+r" (value));
 116         return (value);
 117 }
 118 
 119 #endif
 120 
 121 /*
 122  * SHA1Init()
 123  *
 124  * purpose: initializes the sha1 context and begins and sha1 digest operation
 125  *   input: SHA1_CTX *  : the context to initializes.
 126  *  output: void
 127  */
 128 
 129 void
 130 SHA1Init(SHA1_CTX *ctx)
 131 {
 132         ctx->count[0] = ctx->count[1] = 0;
 133 
 134         /*
 135          * load magic initialization constants. Tell lint
 136          * that these constants are unsigned by using U.
 137          */
 138 
 139         ctx->state[0] = 0x67452301U;
 140         ctx->state[1] = 0xefcdab89U;
 141         ctx->state[2] = 0x98badcfeU;
 142         ctx->state[3] = 0x10325476U;
 143         ctx->state[4] = 0xc3d2e1f0U;
 144 }
 145 
 146 #ifdef VIS_SHA1
 147 #ifdef _KERNEL
 148 
 149 #include <sys/regset.h>
 150 #include <sys/vis.h>
 151 #include <sys/fpu/fpusystm.h>
 152 
 153 /* the alignment for block stores to save fp registers */
 154 #define VIS_ALIGN       (64)
 155 
 156 extern int sha1_savefp(kfpu_t *, int);
 157 extern void sha1_restorefp(kfpu_t *);
 158 
 159 uint32_t        vis_sha1_svfp_threshold = 128;
 160 
 161 #endif /* _KERNEL */
 162 
 163 /*
 164  * VIS SHA-1 consts.
 165  */
 166 static uint64_t VIS[] = {
 167         0x8000000080000000ULL,
 168         0x0002000200020002ULL,
 169         0x5a8279996ed9eba1ULL,
 170         0x8f1bbcdcca62c1d6ULL,
 171         0x012389ab456789abULL};
 172 
 173 extern void SHA1TransformVIS(uint64_t *, uint32_t *, uint32_t *, uint64_t *);
 174 
 175 
 176 /*
 177  * SHA1Update()
 178  *
 179  * purpose: continues an sha1 digest operation, using the message block
 180  *          to update the context.
 181  *   input: SHA1_CTX *  : the context to update
 182  *          void *      : the message block
 183  *          size_t    : the length of the message block in bytes
 184  *  output: void
 185  */
 186 
 187 void
 188 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
 189 {
 190         uint32_t i, buf_index, buf_len;
 191         uint64_t X0[40], input64[8];
 192         const uint8_t *input = inptr;
 193 #ifdef _KERNEL
 194         int usevis = 0;
 195 #else
 196         int usevis = 1;
 197 #endif /* _KERNEL */
 198 
 199         /* check for noop */
 200         if (input_len == 0)
 201                 return;
 202 
 203         /* compute number of bytes mod 64 */
 204         buf_index = (ctx->count[1] >> 3) & 0x3F;
 205 
 206         /* update number of bits */
 207         if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
 208                 ctx->count[0]++;
 209 
 210         ctx->count[0] += (input_len >> 29);
 211 
 212         buf_len = 64 - buf_index;
 213 
 214         /* transform as many times as possible */
 215         i = 0;
 216         if (input_len >= buf_len) {
 217 #ifdef _KERNEL
 218                 kfpu_t *fpu;
 219                 if (fpu_exists) {
 220                         uint8_t fpua[sizeof (kfpu_t) + GSR_SIZE + VIS_ALIGN];
 221                         uint32_t len = (input_len + buf_index) & ~0x3f;
 222                         int svfp_ok;
 223 
 224                         fpu = (kfpu_t *)P2ROUNDUP((uintptr_t)fpua, 64);
 225                         svfp_ok = ((len >= vis_sha1_svfp_threshold) ? 1 : 0);
 226                         usevis = fpu_exists && sha1_savefp(fpu, svfp_ok);
 227                 } else {
 228                         usevis = 0;
 229                 }
 230 #endif /* _KERNEL */
 231 
 232                 /*
 233                  * general optimization:
 234                  *
 235                  * only do initial bcopy() and SHA1Transform() if
 236                  * buf_index != 0.  if buf_index == 0, we're just
 237                  * wasting our time doing the bcopy() since there
 238                  * wasn't any data left over from a previous call to
 239                  * SHA1Update().
 240                  */
 241 
 242                 if (buf_index) {
 243                         bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
 244                         if (usevis) {
 245                                 SHA1TransformVIS(X0,
 246                                     ctx->buf_un.buf32,
 247                                     &ctx->state[0], VIS);
 248                         } else {
 249                                 SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
 250                         }
 251                         i = buf_len;
 252                 }
 253 
 254                 /*
 255                  * VIS SHA-1: uses the VIS 1.0 instructions to accelerate
 256                  * SHA-1 processing. This is achieved by "offloading" the
 257                  * computation of the message schedule (MS) to the VIS units.
 258                  * This allows the VIS computation of the message schedule
 259                  * to be performed in parallel with the standard integer
 260                  * processing of the remainder of the SHA-1 computation.
 261                  * performance by up to around 1.37X, compared to an optimized
 262                  * integer-only implementation.
 263                  *
 264                  * The VIS implementation of SHA1Transform has a different API
 265                  * to the standard integer version:
 266                  *
 267                  * void SHA1TransformVIS(
 268                  *       uint64_t *, // Pointer to MS for ith block
 269                  *       uint32_t *, // Pointer to ith block of message data
 270                  *       uint32_t *, // Pointer to SHA state i.e ctx->state
 271                  *       uint64_t *, // Pointer to various VIS constants
 272                  * )
 273                  *
 274                  * Note: the message data must by 4-byte aligned.
 275                  *
 276                  * Function requires VIS 1.0 support.
 277                  *
 278                  * Handling is provided to deal with arbitrary byte alingment
 279                  * of the input data but the performance gains are reduced
 280                  * for alignments other than 4-bytes.
 281                  */
 282                 if (usevis) {
 283                         if (!IS_P2ALIGNED(&input[i], sizeof (uint32_t))) {
 284                                 /*
 285                                  * Main processing loop - input misaligned
 286                                  */
 287                                 for (; i + 63 < input_len; i += 64) {
 288                                         bcopy(&input[i], input64, 64);
 289                                         SHA1TransformVIS(X0,
 290                                             (uint32_t *)input64,
 291                                             &ctx->state[0], VIS);
 292                                 }
 293                         } else {
 294                                 /*
 295                                  * Main processing loop - input 8-byte aligned
 296                                  */
 297                                 for (; i + 63 < input_len; i += 64) {
 298                                         SHA1TransformVIS(X0,
 299                                         /* LINTED E_BAD_PTR_CAST_ALIGN */
 300                                             (uint32_t *)&input[i],
 301                                             &ctx->state[0], VIS);
 302                                 }
 303 
 304                         }
 305 #ifdef _KERNEL
 306                         sha1_restorefp(fpu);
 307 #endif /* _KERNEL */
 308                 } else {
 309                         for (; i + 63 < input_len; i += 64) {
 310                                 SHA1_TRANSFORM(ctx, &input[i]);
 311                         }
 312                 }
 313 
 314                 /*
 315                  * general optimization:
 316                  *
 317                  * if i and input_len are the same, return now instead
 318                  * of calling bcopy(), since the bcopy() in this case
 319                  * will be an expensive nop.
 320                  */
 321 
 322                 if (input_len == i)
 323                         return;
 324 
 325                 buf_index = 0;
 326         }
 327 
 328         /* buffer remaining input */
 329         bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
 330 }
 331 
 332 #else /* VIS_SHA1 */
 333 
 334 void
 335 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
 336 {
 337         uint32_t i, buf_index, buf_len;
 338         const uint8_t *input = inptr;
 339 #if defined(__amd64)
 340         uint32_t        block_count;
 341 #endif  /* __amd64 */
 342 
 343         /* check for noop */
 344         if (input_len == 0)
 345                 return;
 346 
 347         /* compute number of bytes mod 64 */
 348         buf_index = (ctx->count[1] >> 3) & 0x3F;
 349 
 350         /* update number of bits */
 351         if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
 352                 ctx->count[0]++;
 353 
 354         ctx->count[0] += (input_len >> 29);
 355 
 356         buf_len = 64 - buf_index;
 357 
 358         /* transform as many times as possible */
 359         i = 0;
 360         if (input_len >= buf_len) {
 361 
 362                 /*
 363                  * general optimization:
 364                  *
 365                  * only do initial bcopy() and SHA1Transform() if
 366                  * buf_index != 0.  if buf_index == 0, we're just
 367                  * wasting our time doing the bcopy() since there
 368                  * wasn't any data left over from a previous call to
 369                  * SHA1Update().
 370                  */
 371 
 372                 if (buf_index) {
 373                         bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
 374                         SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
 375                         i = buf_len;
 376                 }
 377 
 378 #if !defined(__amd64)
 379                 for (; i + 63 < input_len; i += 64)
 380                         SHA1_TRANSFORM(ctx, &input[i]);
 381 #else
 382                 block_count = (input_len - i) >> 6;
 383                 if (block_count > 0) {
 384                         SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count);
 385                         i += block_count << 6;
 386                 }
 387 #endif  /* !__amd64 */
 388 
 389                 /*
 390                  * general optimization:
 391                  *
 392                  * if i and input_len are the same, return now instead
 393                  * of calling bcopy(), since the bcopy() in this case
 394                  * will be an expensive nop.
 395                  */
 396 
 397                 if (input_len == i)
 398                         return;
 399 
 400                 buf_index = 0;
 401         }
 402 
 403         /* buffer remaining input */
 404         bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
 405 }
 406 
 407 #endif /* VIS_SHA1 */
 408 
 409 /*
 410  * SHA1Final()
 411  *
 412  * purpose: ends an sha1 digest operation, finalizing the message digest and
 413  *          zeroing the context.
 414  *   input: uchar_t *   : A buffer to store the digest.
 415  *                      : The function actually uses void* because many
 416  *                      : callers pass things other than uchar_t here.
 417  *          SHA1_CTX *  : the context to finalize, save, and zero
 418  *  output: void
 419  */
 420 
 421 void
 422 SHA1Final(void *digest, SHA1_CTX *ctx)
 423 {
 424         uint8_t         bitcount_be[sizeof (ctx->count)];
 425         uint32_t        index = (ctx->count[1] >> 3) & 0x3f;
 426 
 427         /* store bit count, big endian */
 428         Encode(bitcount_be, ctx->count, sizeof (bitcount_be));
 429 
 430         /* pad out to 56 mod 64 */
 431         SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
 432 
 433         /* append length (before padding) */
 434         SHA1Update(ctx, bitcount_be, sizeof (bitcount_be));
 435 
 436         /* store state in digest */
 437         Encode(digest, ctx->state, sizeof (ctx->state));
 438 
 439         /* zeroize sensitive information */
 440         bzero(ctx, sizeof (*ctx));
 441 }
 442 
 443 
 444 #if !defined(__amd64)
 445 
 446 typedef uint32_t sha1word;
 447 
 448 /*
 449  * sparc optimization:
 450  *
 451  * on the sparc, we can load big endian 32-bit data easily.  note that
 452  * special care must be taken to ensure the address is 32-bit aligned.
 453  * in the interest of speed, we don't check to make sure, since
 454  * careful programming can guarantee this for us.
 455  */
 456 
 457 #if     defined(_BIG_ENDIAN)
 458 
 459 #define LOAD_BIG_32(addr)       (*(uint32_t *)(addr))
 460 
 461 #else   /* !defined(_BIG_ENDIAN) */
 462 
 463 #if     defined(HAVE_BSWAP)
 464 
 465 #define LOAD_BIG_32(addr) bswap(*((uint32_t *)(addr)))
 466 
 467 #else   /* !defined(HAVE_BSWAP) */
 468 
 469 /* little endian -- will work on big endian, but slowly */
 470 #define LOAD_BIG_32(addr)       \
 471         (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
 472 
 473 #endif  /* !defined(HAVE_BSWAP) */
 474 
 475 #endif  /* !defined(_BIG_ENDIAN) */
 476 
 477 /*
 478  * SHA1Transform()
 479  */
 480 #if     defined(W_ARRAY)
 481 #define W(n) w[n]
 482 #else   /* !defined(W_ARRAY) */
 483 #define W(n) w_ ## n
 484 #endif  /* !defined(W_ARRAY) */
 485 
 486 
 487 #if     defined(__sparc)
 488 
 489 /*
 490  * sparc register window optimization:
 491  *
 492  * `a', `b', `c', `d', and `e' are passed into SHA1Transform
 493  * explicitly since it increases the number of registers available to
 494  * the compiler.  under this scheme, these variables can be held in
 495  * %i0 - %i4, which leaves more local and out registers available.
 496  *
 497  * purpose: sha1 transformation -- updates the digest based on `block'
 498  *   input: uint32_t    : bytes  1 -  4 of the digest
 499  *          uint32_t    : bytes  5 -  8 of the digest
 500  *          uint32_t    : bytes  9 - 12 of the digest
 501  *          uint32_t    : bytes 12 - 16 of the digest
 502  *          uint32_t    : bytes 16 - 20 of the digest
 503  *          SHA1_CTX *  : the context to update
 504  *          uint8_t [64]: the block to use to update the digest
 505  *  output: void
 506  */
 507 
 508 void
 509 SHA1Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e,
 510     SHA1_CTX *ctx, const uint8_t blk[64])
 511 {
 512         /*
 513          * sparc optimization:
 514          *
 515          * while it is somewhat counter-intuitive, on sparc, it is
 516          * more efficient to place all the constants used in this
 517          * function in an array and load the values out of the array
 518          * than to manually load the constants.  this is because
 519          * setting a register to a 32-bit value takes two ops in most
 520          * cases: a `sethi' and an `or', but loading a 32-bit value
 521          * from memory only takes one `ld' (or `lduw' on v9).  while
 522          * this increases memory usage, the compiler can find enough
 523          * other things to do while waiting to keep the pipeline does
 524          * not stall.  additionally, it is likely that many of these
 525          * constants are cached so that later accesses do not even go
 526          * out to the bus.
 527          *
 528          * this array is declared `static' to keep the compiler from
 529          * having to bcopy() this array onto the stack frame of
 530          * SHA1Transform() each time it is called -- which is
 531          * unacceptably expensive.
 532          *
 533          * the `const' is to ensure that callers are good citizens and
 534          * do not try to munge the array.  since these routines are
 535          * going to be called from inside multithreaded kernelland,
 536          * this is a good safety check. -- `sha1_consts' will end up in
 537          * .rodata.
 538          *
 539          * unfortunately, loading from an array in this manner hurts
 540          * performance under intel.  so, there is a macro,
 541          * SHA1_CONST(), used in SHA1Transform(), that either expands to
 542          * a reference to this array, or to the actual constant,
 543          * depending on what platform this code is compiled for.
 544          */
 545 
 546         static const uint32_t sha1_consts[] = {
 547                 SHA1_CONST_0,   SHA1_CONST_1,   SHA1_CONST_2,   SHA1_CONST_3,
 548         };
 549 
 550         /*
 551          * general optimization:
 552          *
 553          * use individual integers instead of using an array.  this is a
 554          * win, although the amount it wins by seems to vary quite a bit.
 555          */
 556 
 557         uint32_t        w_0, w_1, w_2,  w_3,  w_4,  w_5,  w_6,  w_7;
 558         uint32_t        w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
 559 
 560         /*
 561          * sparc optimization:
 562          *
 563          * if `block' is already aligned on a 4-byte boundary, use
 564          * LOAD_BIG_32() directly.  otherwise, bcopy() into a
 565          * buffer that *is* aligned on a 4-byte boundary and then do
 566          * the LOAD_BIG_32() on that buffer.  benchmarks have shown
 567          * that using the bcopy() is better than loading the bytes
 568          * individually and doing the endian-swap by hand.
 569          *
 570          * even though it's quite tempting to assign to do:
 571          *
 572          * blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32));
 573          *
 574          * and only have one set of LOAD_BIG_32()'s, the compiler
 575          * *does not* like that, so please resist the urge.
 576          */
 577 
 578         if ((uintptr_t)blk & 0x3) {         /* not 4-byte aligned? */
 579                 bcopy(blk, ctx->buf_un.buf32,  sizeof (ctx->buf_un.buf32));
 580                 w_15 = LOAD_BIG_32(ctx->buf_un.buf32 + 15);
 581                 w_14 = LOAD_BIG_32(ctx->buf_un.buf32 + 14);
 582                 w_13 = LOAD_BIG_32(ctx->buf_un.buf32 + 13);
 583                 w_12 = LOAD_BIG_32(ctx->buf_un.buf32 + 12);
 584                 w_11 = LOAD_BIG_32(ctx->buf_un.buf32 + 11);
 585                 w_10 = LOAD_BIG_32(ctx->buf_un.buf32 + 10);
 586                 w_9  = LOAD_BIG_32(ctx->buf_un.buf32 +  9);
 587                 w_8  = LOAD_BIG_32(ctx->buf_un.buf32 +  8);
 588                 w_7  = LOAD_BIG_32(ctx->buf_un.buf32 +  7);
 589                 w_6  = LOAD_BIG_32(ctx->buf_un.buf32 +  6);
 590                 w_5  = LOAD_BIG_32(ctx->buf_un.buf32 +  5);
 591                 w_4  = LOAD_BIG_32(ctx->buf_un.buf32 +  4);
 592                 w_3  = LOAD_BIG_32(ctx->buf_un.buf32 +  3);
 593                 w_2  = LOAD_BIG_32(ctx->buf_un.buf32 +  2);
 594                 w_1  = LOAD_BIG_32(ctx->buf_un.buf32 +  1);
 595                 w_0  = LOAD_BIG_32(ctx->buf_un.buf32 +  0);
 596         } else {
 597                 /*LINTED*/
 598                 w_15 = LOAD_BIG_32(blk + 60);
 599                 /*LINTED*/
 600                 w_14 = LOAD_BIG_32(blk + 56);
 601                 /*LINTED*/
 602                 w_13 = LOAD_BIG_32(blk + 52);
 603                 /*LINTED*/
 604                 w_12 = LOAD_BIG_32(blk + 48);
 605                 /*LINTED*/
 606                 w_11 = LOAD_BIG_32(blk + 44);
 607                 /*LINTED*/
 608                 w_10 = LOAD_BIG_32(blk + 40);
 609                 /*LINTED*/
 610                 w_9  = LOAD_BIG_32(blk + 36);
 611                 /*LINTED*/
 612                 w_8  = LOAD_BIG_32(blk + 32);
 613                 /*LINTED*/
 614                 w_7  = LOAD_BIG_32(blk + 28);
 615                 /*LINTED*/
 616                 w_6  = LOAD_BIG_32(blk + 24);
 617                 /*LINTED*/
 618                 w_5  = LOAD_BIG_32(blk + 20);
 619                 /*LINTED*/
 620                 w_4  = LOAD_BIG_32(blk + 16);
 621                 /*LINTED*/
 622                 w_3  = LOAD_BIG_32(blk + 12);
 623                 /*LINTED*/
 624                 w_2  = LOAD_BIG_32(blk +  8);
 625                 /*LINTED*/
 626                 w_1  = LOAD_BIG_32(blk +  4);
 627                 /*LINTED*/
 628                 w_0  = LOAD_BIG_32(blk +  0);
 629         }
 630 #else   /* !defined(__sparc) */
 631 
 632 void
 633 SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64])
 634 {
 635         sha1word a = ctx->state[0];
 636         sha1word b = ctx->state[1];
 637         sha1word c = ctx->state[2];
 638         sha1word d = ctx->state[3];
 639         sha1word e = ctx->state[4];
 640 
 641 #if     defined(W_ARRAY)
 642         sha1word        w[16];
 643 #else   /* !defined(W_ARRAY) */
 644         sha1word        w_0, w_1, w_2,  w_3,  w_4,  w_5,  w_6,  w_7;
 645         sha1word        w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
 646 #endif  /* !defined(W_ARRAY) */
 647 
 648         W(0)  = LOAD_BIG_32(blk +  0);
 649         W(1)  = LOAD_BIG_32(blk +  4);
 650         W(2)  = LOAD_BIG_32(blk +  8);
 651         W(3)  = LOAD_BIG_32(blk + 12);
 652         W(4)  = LOAD_BIG_32(blk + 16);
 653         W(5)  = LOAD_BIG_32(blk + 20);
 654         W(6)  = LOAD_BIG_32(blk + 24);
 655         W(7)  = LOAD_BIG_32(blk + 28);
 656         W(8)  = LOAD_BIG_32(blk + 32);
 657         W(9)  = LOAD_BIG_32(blk + 36);
 658         W(10) = LOAD_BIG_32(blk + 40);
 659         W(11) = LOAD_BIG_32(blk + 44);
 660         W(12) = LOAD_BIG_32(blk + 48);
 661         W(13) = LOAD_BIG_32(blk + 52);
 662         W(14) = LOAD_BIG_32(blk + 56);
 663         W(15) = LOAD_BIG_32(blk + 60);
 664 
 665 #endif  /* !defined(__sparc) */
 666 
 667         /*
 668          * general optimization:
 669          *
 670          * even though this approach is described in the standard as
 671          * being slower algorithmically, it is 30-40% faster than the
 672          * "faster" version under SPARC, because this version has more
 673          * of the constraints specified at compile-time and uses fewer
 674          * variables (and therefore has better register utilization)
 675          * than its "speedier" brother.  (i've tried both, trust me)
 676          *
 677          * for either method given in the spec, there is an "assignment"
 678          * phase where the following takes place:
 679          *
 680          *      tmp = (main_computation);
 681          *      e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp;
 682          *
 683          * we can make the algorithm go faster by not doing this work,
 684          * but just pretending that `d' is now `e', etc. this works
 685          * really well and obviates the need for a temporary variable.
 686          * however, we still explicitly perform the rotate action,
 687          * since it is cheaper on SPARC to do it once than to have to
 688          * do it over and over again.
 689          */
 690 
 691         /* round 1 */
 692         e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */
 693         b = ROTATE_LEFT(b, 30);
 694 
 695         d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */
 696         a = ROTATE_LEFT(a, 30);
 697 
 698         c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */
 699         e = ROTATE_LEFT(e, 30);
 700 
 701         b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */
 702         d = ROTATE_LEFT(d, 30);
 703 
 704         a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */
 705         c = ROTATE_LEFT(c, 30);
 706 
 707         e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */
 708         b = ROTATE_LEFT(b, 30);
 709 
 710         d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */
 711         a = ROTATE_LEFT(a, 30);
 712 
 713         c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */
 714         e = ROTATE_LEFT(e, 30);
 715 
 716         b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */
 717         d = ROTATE_LEFT(d, 30);
 718 
 719         a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */
 720         c = ROTATE_LEFT(c, 30);
 721 
 722         e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */
 723         b = ROTATE_LEFT(b, 30);
 724 
 725         d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */
 726         a = ROTATE_LEFT(a, 30);
 727 
 728         c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */
 729         e = ROTATE_LEFT(e, 30);
 730 
 731         b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */
 732         d = ROTATE_LEFT(d, 30);
 733 
 734         a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */
 735         c = ROTATE_LEFT(c, 30);
 736 
 737         e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */
 738         b = ROTATE_LEFT(b, 30);
 739 
 740         W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);            /* 16 */
 741         d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0);
 742         a = ROTATE_LEFT(a, 30);
 743 
 744         W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);            /* 17 */
 745         c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0);
 746         e = ROTATE_LEFT(e, 30);
 747 
 748         W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);   /* 18 */
 749         b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0);
 750         d = ROTATE_LEFT(d, 30);
 751 
 752         W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);            /* 19 */
 753         a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0);
 754         c = ROTATE_LEFT(c, 30);
 755 
 756         /* round 2 */
 757         W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);            /* 20 */
 758         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1);
 759         b = ROTATE_LEFT(b, 30);
 760 
 761         W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);            /* 21 */
 762         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1);
 763         a = ROTATE_LEFT(a, 30);
 764 
 765         W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);            /* 22 */
 766         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1);
 767         e = ROTATE_LEFT(e, 30);
 768 
 769         W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);            /* 23 */
 770         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1);
 771         d = ROTATE_LEFT(d, 30);
 772 
 773         W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);            /* 24 */
 774         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1);
 775         c = ROTATE_LEFT(c, 30);
 776 
 777         W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);            /* 25 */
 778         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1);
 779         b = ROTATE_LEFT(b, 30);
 780 
 781         W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);  /* 26 */
 782         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1);
 783         a = ROTATE_LEFT(a, 30);
 784 
 785         W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);  /* 27 */
 786         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1);
 787         e = ROTATE_LEFT(e, 30);
 788 
 789         W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);  /* 28 */
 790         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1);
 791         d = ROTATE_LEFT(d, 30);
 792 
 793         W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 29 */
 794         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1);
 795         c = ROTATE_LEFT(c, 30);
 796 
 797         W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);  /* 30 */
 798         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1);
 799         b = ROTATE_LEFT(b, 30);
 800 
 801         W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);  /* 31 */
 802         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1);
 803         a = ROTATE_LEFT(a, 30);
 804 
 805         W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);            /* 32 */
 806         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1);
 807         e = ROTATE_LEFT(e, 30);
 808 
 809         W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);            /* 33 */
 810         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1);
 811         d = ROTATE_LEFT(d, 30);
 812 
 813         W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);   /* 34 */
 814         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1);
 815         c = ROTATE_LEFT(c, 30);
 816 
 817         W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);            /* 35 */
 818         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1);
 819         b = ROTATE_LEFT(b, 30);
 820 
 821         W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);            /* 36 */
 822         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1);
 823         a = ROTATE_LEFT(a, 30);
 824 
 825         W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);            /* 37 */
 826         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1);
 827         e = ROTATE_LEFT(e, 30);
 828 
 829         W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);            /* 38 */
 830         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1);
 831         d = ROTATE_LEFT(d, 30);
 832 
 833         W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);            /* 39 */
 834         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1);
 835         c = ROTATE_LEFT(c, 30);
 836 
 837         /* round 3 */
 838         W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);            /* 40 */
 839         e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2);
 840         b = ROTATE_LEFT(b, 30);
 841 
 842         W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);            /* 41 */
 843         d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2);
 844         a = ROTATE_LEFT(a, 30);
 845 
 846         W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);  /* 42 */
 847         c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2);
 848         e = ROTATE_LEFT(e, 30);
 849 
 850         W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);  /* 43 */
 851         b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2);
 852         d = ROTATE_LEFT(d, 30);
 853 
 854         W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);  /* 44 */
 855         a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2);
 856         c = ROTATE_LEFT(c, 30);
 857 
 858         W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 45 */
 859         e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2);
 860         b = ROTATE_LEFT(b, 30);
 861 
 862         W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);  /* 46 */
 863         d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2);
 864         a = ROTATE_LEFT(a, 30);
 865 
 866         W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);  /* 47 */
 867         c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2);
 868         e = ROTATE_LEFT(e, 30);
 869 
 870         W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);            /* 48 */
 871         b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2);
 872         d = ROTATE_LEFT(d, 30);
 873 
 874         W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);            /* 49 */
 875         a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2);
 876         c = ROTATE_LEFT(c, 30);
 877 
 878         W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);   /* 50 */
 879         e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2);
 880         b = ROTATE_LEFT(b, 30);
 881 
 882         W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);            /* 51 */
 883         d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2);
 884         a = ROTATE_LEFT(a, 30);
 885 
 886         W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);            /* 52 */
 887         c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2);
 888         e = ROTATE_LEFT(e, 30);
 889 
 890         W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);            /* 53 */
 891         b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2);
 892         d = ROTATE_LEFT(d, 30);
 893 
 894         W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);            /* 54 */
 895         a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2);
 896         c = ROTATE_LEFT(c, 30);
 897 
 898         W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);            /* 55 */
 899         e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2);
 900         b = ROTATE_LEFT(b, 30);
 901 
 902         W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);            /* 56 */
 903         d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2);
 904         a = ROTATE_LEFT(a, 30);
 905 
 906         W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);            /* 57 */
 907         c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2);
 908         e = ROTATE_LEFT(e, 30);
 909 
 910         W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);  /* 58 */
 911         b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2);
 912         d = ROTATE_LEFT(d, 30);
 913 
 914         W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);  /* 59 */
 915         a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2);
 916         c = ROTATE_LEFT(c, 30);
 917 
 918         /* round 4 */
 919         W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);  /* 60 */
 920         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3);
 921         b = ROTATE_LEFT(b, 30);
 922 
 923         W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 61 */
 924         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3);
 925         a = ROTATE_LEFT(a, 30);
 926 
 927         W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);  /* 62 */
 928         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3);
 929         e = ROTATE_LEFT(e, 30);
 930 
 931         W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);  /* 63 */
 932         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3);
 933         d = ROTATE_LEFT(d, 30);
 934 
 935         W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);            /* 64 */
 936         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3);
 937         c = ROTATE_LEFT(c, 30);
 938 
 939         W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);            /* 65 */
 940         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3);
 941         b = ROTATE_LEFT(b, 30);
 942 
 943         W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);   /* 66 */
 944         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3);
 945         a = ROTATE_LEFT(a, 30);
 946 
 947         W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);            /* 67 */
 948         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3);
 949         e = ROTATE_LEFT(e, 30);
 950 
 951         W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);            /* 68 */
 952         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3);
 953         d = ROTATE_LEFT(d, 30);
 954 
 955         W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);            /* 69 */
 956         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3);
 957         c = ROTATE_LEFT(c, 30);
 958 
 959         W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);            /* 70 */
 960         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3);
 961         b = ROTATE_LEFT(b, 30);
 962 
 963         W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);            /* 71 */
 964         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3);
 965         a = ROTATE_LEFT(a, 30);
 966 
 967         W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);            /* 72 */
 968         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3);
 969         e = ROTATE_LEFT(e, 30);
 970 
 971         W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);            /* 73 */
 972         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3);
 973         d = ROTATE_LEFT(d, 30);
 974 
 975         W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);  /* 74 */
 976         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3);
 977         c = ROTATE_LEFT(c, 30);
 978 
 979         W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);  /* 75 */
 980         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3);
 981         b = ROTATE_LEFT(b, 30);
 982 
 983         W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);  /* 76 */
 984         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3);
 985         a = ROTATE_LEFT(a, 30);
 986 
 987         W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 77 */
 988         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3);
 989         e = ROTATE_LEFT(e, 30);
 990 
 991         W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);  /* 78 */
 992         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3);
 993         d = ROTATE_LEFT(d, 30);
 994 
 995         W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);  /* 79 */
 996 
 997         ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) +
 998             SHA1_CONST(3);
 999         ctx->state[1] += b;
1000         ctx->state[2] += ROTATE_LEFT(c, 30);
1001         ctx->state[3] += d;
1002         ctx->state[4] += e;
1003 
1004         /* zeroize sensitive information */
1005         W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0;
1006         W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0;
1007 }
1008 #endif  /* !__amd64 */
1009 
1010 
1011 /*
1012  * Encode()
1013  *
1014  * purpose: to convert a list of numbers from little endian to big endian
1015  *   input: uint8_t *   : place to store the converted big endian numbers
1016  *          uint32_t *  : place to get numbers to convert from
1017  *          size_t      : the length of the input in bytes
1018  *  output: void
1019  */
1020 
1021 static void
1022 Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input,
1023     size_t len)
1024 {
1025         size_t          i, j;
1026 
1027 #if     defined(__sparc)
1028         if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
1029                 for (i = 0, j = 0; j < len; i++, j += 4) {
1030                         /* LINTED: pointer alignment */
1031                         *((uint32_t *)(output + j)) = input[i];
1032                 }
1033         } else {
1034 #endif  /* little endian -- will work on big endian, but slowly */
1035                 for (i = 0, j = 0; j < len; i++, j += 4) {
1036                         output[j]       = (input[i] >> 24) & 0xff;
1037                         output[j + 1]   = (input[i] >> 16) & 0xff;
1038                         output[j + 2]   = (input[i] >>  8) & 0xff;
1039                         output[j + 3]   = input[i] & 0xff;
1040                 }
1041 #if     defined(__sparc)
1042         }
1043 #endif
1044 }