1 /*
   2  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
   3  * Use is subject to license terms.
   4  */
   5 
   6 /*
   7  * The basic framework for this code came from the reference
   8  * implementation for MD5.  That implementation is Copyright (C)
   9  * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
  10  *
  11  * License to copy and use this software is granted provided that it
  12  * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
  13  * Algorithm" in all material mentioning or referencing this software
  14  * or this function.
  15  *
  16  * License is also granted to make and use derivative works provided
  17  * that such works are identified as "derived from the RSA Data
  18  * Security, Inc. MD5 Message-Digest Algorithm" in all material
  19  * mentioning or referencing the derived work.
  20  *
  21  * RSA Data Security, Inc. makes no representations concerning either
  22  * the merchantability of this software or the suitability of this
  23  * software for any particular purpose. It is provided "as is"
  24  * without express or implied warranty of any kind.
  25  *
  26  * These notices must be retained in any copies of any part of this
  27  * documentation and/or software.
  28  *
  29  * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1
  30  * standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm
  31  * Not as fast as one would like -- further optimizations are encouraged
  32  * and appreciated.
  33  */
  34 
  35 #include <sys/types.h>
  36 #include <sys/param.h>
  37 #include <sys/systm.h>
  38 #include <sys/sysmacros.h>
  39 #include <sys/sha1.h>
  40 #include <sys/sha1_consts.h>
  41 
  42 #ifndef _KERNEL
  43 #include <strings.h>
  44 #include <stdlib.h>
  45 #include <errno.h>
  46 #include <sys/systeminfo.h>
  47 #endif  /* !_KERNEL */
  48 
  49 #ifdef _LITTLE_ENDIAN
  50 #include <sys/byteorder.h>
  51 #define HAVE_HTONL
  52 #endif
  53 
  54 static void Encode(uint8_t *, const uint32_t *, size_t);
  55 
  56 #if     defined(__sparc)
  57 
  58 #define SHA1_TRANSFORM(ctx, in) \
  59         SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \
  60                 (ctx)->state[3], (ctx)->state[4], (ctx), (in))
  61 
  62 static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t,
  63     SHA1_CTX *, const uint8_t *);
  64 
  65 #elif   defined(__amd64)
  66 
  67 #define SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1)
  68 #define SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \
  69                 (in), (num))
  70 
  71 void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks);
  72 
  73 #else
  74 
  75 #define SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in))
  76 
  77 static void SHA1Transform(SHA1_CTX *, const uint8_t *);
  78 
  79 #endif
  80 
  81 
  82 static uint8_t PADDING[64] = { 0x80, /* all zeros */ };
  83 
  84 /*
  85  * F, G, and H are the basic SHA1 functions.
  86  */
  87 #define F(b, c, d)      (((b) & (c)) | ((~b) & (d)))
  88 #define G(b, c, d)      ((b) ^ (c) ^ (d))
  89 #define H(b, c, d)      (((b) & (c)) | (((b)|(c)) & (d)))
  90 
  91 /*
  92  * ROTATE_LEFT rotates x left n bits.
  93  */
  94 
  95 #if     defined(__GNUC__) && defined(_LP64)
  96 static __inline__ uint64_t
  97 ROTATE_LEFT(uint64_t value, uint32_t n)
  98 {
  99         uint32_t t32;
 100 
 101         t32 = (uint32_t)value;
 102         return ((t32 << n) | (t32 >> (32 - n)));
 103 }
 104 
 105 #else
 106 
 107 #define ROTATE_LEFT(x, n)       \
 108         (((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n))))
 109 
 110 #endif
 111 
 112 
 113 /*
 114  * SHA1Init()
 115  *
 116  * purpose: initializes the sha1 context and begins and sha1 digest operation
 117  *   input: SHA1_CTX *  : the context to initializes.
 118  *  output: void
 119  */
 120 
 121 void
 122 SHA1Init(SHA1_CTX *ctx)
 123 {
 124         ctx->count[0] = ctx->count[1] = 0;
 125 
 126         /*
 127          * load magic initialization constants. Tell lint
 128          * that these constants are unsigned by using U.
 129          */
 130 
 131         ctx->state[0] = 0x67452301U;
 132         ctx->state[1] = 0xefcdab89U;
 133         ctx->state[2] = 0x98badcfeU;
 134         ctx->state[3] = 0x10325476U;
 135         ctx->state[4] = 0xc3d2e1f0U;
 136 }
 137 
 138 #ifdef VIS_SHA1
 139 #ifdef _KERNEL
 140 
 141 #include <sys/regset.h>
 142 #include <sys/vis.h>
 143 #include <sys/fpu/fpusystm.h>
 144 
 145 /* the alignment for block stores to save fp registers */
 146 #define VIS_ALIGN       (64)
 147 
 148 extern int sha1_savefp(kfpu_t *, int);
 149 extern void sha1_restorefp(kfpu_t *);
 150 
 151 uint32_t        vis_sha1_svfp_threshold = 128;
 152 
 153 #endif /* _KERNEL */
 154 
 155 /*
 156  * VIS SHA-1 consts.
 157  */
 158 static uint64_t VIS[] = {
 159         0x8000000080000000ULL,
 160         0x0002000200020002ULL,
 161         0x5a8279996ed9eba1ULL,
 162         0x8f1bbcdcca62c1d6ULL,
 163         0x012389ab456789abULL};
 164 
 165 extern void SHA1TransformVIS(uint64_t *, uint32_t *, uint32_t *, uint64_t *);
 166 
 167 
 168 /*
 169  * SHA1Update()
 170  *
 171  * purpose: continues an sha1 digest operation, using the message block
 172  *          to update the context.
 173  *   input: SHA1_CTX *  : the context to update
 174  *          void *      : the message block
 175  *          size_t    : the length of the message block in bytes
 176  *  output: void
 177  */
 178 
 179 void
 180 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
 181 {
 182         uint32_t i, buf_index, buf_len;
 183         uint64_t X0[40], input64[8];
 184         const uint8_t *input = inptr;
 185 #ifdef _KERNEL
 186         int usevis = 0;
 187 #else
 188         int usevis = 1;
 189 #endif /* _KERNEL */
 190 
 191         /* check for noop */
 192         if (input_len == 0)
 193                 return;
 194 
 195         /* compute number of bytes mod 64 */
 196         buf_index = (ctx->count[1] >> 3) & 0x3F;
 197 
 198         /* update number of bits */
 199         if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
 200                 ctx->count[0]++;
 201 
 202         ctx->count[0] += (input_len >> 29);
 203 
 204         buf_len = 64 - buf_index;
 205 
 206         /* transform as many times as possible */
 207         i = 0;
 208         if (input_len >= buf_len) {
 209 #ifdef _KERNEL
 210                 kfpu_t *fpu;
 211                 if (fpu_exists) {
 212                         uint8_t fpua[sizeof (kfpu_t) + GSR_SIZE + VIS_ALIGN];
 213                         uint32_t len = (input_len + buf_index) & ~0x3f;
 214                         int svfp_ok;
 215 
 216                         fpu = (kfpu_t *)P2ROUNDUP((uintptr_t)fpua, 64);
 217                         svfp_ok = ((len >= vis_sha1_svfp_threshold) ? 1 : 0);
 218                         usevis = fpu_exists && sha1_savefp(fpu, svfp_ok);
 219                 } else {
 220                         usevis = 0;
 221                 }
 222 #endif /* _KERNEL */
 223 
 224                 /*
 225                  * general optimization:
 226                  *
 227                  * only do initial bcopy() and SHA1Transform() if
 228                  * buf_index != 0.  if buf_index == 0, we're just
 229                  * wasting our time doing the bcopy() since there
 230                  * wasn't any data left over from a previous call to
 231                  * SHA1Update().
 232                  */
 233 
 234                 if (buf_index) {
 235                         bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
 236                         if (usevis) {
 237                                 SHA1TransformVIS(X0,
 238                                     ctx->buf_un.buf32,
 239                                     &ctx->state[0], VIS);
 240                         } else {
 241                                 SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
 242                         }
 243                         i = buf_len;
 244                 }
 245 
 246                 /*
 247                  * VIS SHA-1: uses the VIS 1.0 instructions to accelerate
 248                  * SHA-1 processing. This is achieved by "offloading" the
 249                  * computation of the message schedule (MS) to the VIS units.
 250                  * This allows the VIS computation of the message schedule
 251                  * to be performed in parallel with the standard integer
 252                  * processing of the remainder of the SHA-1 computation.
 253                  * performance by up to around 1.37X, compared to an optimized
 254                  * integer-only implementation.
 255                  *
 256                  * The VIS implementation of SHA1Transform has a different API
 257                  * to the standard integer version:
 258                  *
 259                  * void SHA1TransformVIS(
 260                  *       uint64_t *, // Pointer to MS for ith block
 261                  *       uint32_t *, // Pointer to ith block of message data
 262                  *       uint32_t *, // Pointer to SHA state i.e ctx->state
 263                  *       uint64_t *, // Pointer to various VIS constants
 264                  * )
 265                  *
 266                  * Note: the message data must by 4-byte aligned.
 267                  *
 268                  * Function requires VIS 1.0 support.
 269                  *
 270                  * Handling is provided to deal with arbitrary byte alingment
 271                  * of the input data but the performance gains are reduced
 272                  * for alignments other than 4-bytes.
 273                  */
 274                 if (usevis) {
 275                         if (!IS_P2ALIGNED(&input[i], sizeof (uint32_t))) {
 276                                 /*
 277                                  * Main processing loop - input misaligned
 278                                  */
 279                                 for (; i + 63 < input_len; i += 64) {
 280                                         bcopy(&input[i], input64, 64);
 281                                         SHA1TransformVIS(X0,
 282                                             (uint32_t *)input64,
 283                                             &ctx->state[0], VIS);
 284                                 }
 285                         } else {
 286                                 /*
 287                                  * Main processing loop - input 8-byte aligned
 288                                  */
 289                                 for (; i + 63 < input_len; i += 64) {
 290                                         SHA1TransformVIS(X0,
 291                                             /* LINTED E_BAD_PTR_CAST_ALIGN */
 292                                             (uint32_t *)&input[i], /* CSTYLED */
 293                                             &ctx->state[0], VIS);
 294                                 }
 295 
 296                         }
 297 #ifdef _KERNEL
 298                         sha1_restorefp(fpu);
 299 #endif /* _KERNEL */
 300                 } else {
 301                         for (; i + 63 < input_len; i += 64) {
 302                                 SHA1_TRANSFORM(ctx, &input[i]);
 303                         }
 304                 }
 305 
 306                 /*
 307                  * general optimization:
 308                  *
 309                  * if i and input_len are the same, return now instead
 310                  * of calling bcopy(), since the bcopy() in this case
 311                  * will be an expensive nop.
 312                  */
 313 
 314                 if (input_len == i)
 315                         return;
 316 
 317                 buf_index = 0;
 318         }
 319 
 320         /* buffer remaining input */
 321         bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
 322 }
 323 
 324 #else /* VIS_SHA1 */
 325 
 326 void
 327 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
 328 {
 329         uint32_t i, buf_index, buf_len;
 330         const uint8_t *input = inptr;
 331 #if defined(__amd64)
 332         uint32_t        block_count;
 333 #endif  /* __amd64 */
 334 
 335         /* check for noop */
 336         if (input_len == 0)
 337                 return;
 338 
 339         /* compute number of bytes mod 64 */
 340         buf_index = (ctx->count[1] >> 3) & 0x3F;
 341 
 342         /* update number of bits */
 343         if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
 344                 ctx->count[0]++;
 345 
 346         ctx->count[0] += (input_len >> 29);
 347 
 348         buf_len = 64 - buf_index;
 349 
 350         /* transform as many times as possible */
 351         i = 0;
 352         if (input_len >= buf_len) {
 353 
 354                 /*
 355                  * general optimization:
 356                  *
 357                  * only do initial bcopy() and SHA1Transform() if
 358                  * buf_index != 0.  if buf_index == 0, we're just
 359                  * wasting our time doing the bcopy() since there
 360                  * wasn't any data left over from a previous call to
 361                  * SHA1Update().
 362                  */
 363 
 364                 if (buf_index) {
 365                         bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
 366                         SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
 367                         i = buf_len;
 368                 }
 369 
 370 #if !defined(__amd64)
 371                 for (; i + 63 < input_len; i += 64)
 372                         SHA1_TRANSFORM(ctx, &input[i]);
 373 #else
 374                 block_count = (input_len - i) >> 6;
 375                 if (block_count > 0) {
 376                         SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count);
 377                         i += block_count << 6;
 378                 }
 379 #endif  /* !__amd64 */
 380 
 381                 /*
 382                  * general optimization:
 383                  *
 384                  * if i and input_len are the same, return now instead
 385                  * of calling bcopy(), since the bcopy() in this case
 386                  * will be an expensive nop.
 387                  */
 388 
 389                 if (input_len == i)
 390                         return;
 391 
 392                 buf_index = 0;
 393         }
 394 
 395         /* buffer remaining input */
 396         bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
 397 }
 398 
 399 #endif /* VIS_SHA1 */
 400 
 401 /*
 402  * SHA1Final()
 403  *
 404  * purpose: ends an sha1 digest operation, finalizing the message digest and
 405  *          zeroing the context.
 406  *   input: uchar_t *   : A buffer to store the digest.
 407  *                      : The function actually uses void* because many
 408  *                      : callers pass things other than uchar_t here.
 409  *          SHA1_CTX *  : the context to finalize, save, and zero
 410  *  output: void
 411  */
 412 
 413 void
 414 SHA1Final(void *digest, SHA1_CTX *ctx)
 415 {
 416         uint8_t         bitcount_be[sizeof (ctx->count)];
 417         uint32_t        index = (ctx->count[1] >> 3) & 0x3f;
 418 
 419         /* store bit count, big endian */
 420         Encode(bitcount_be, ctx->count, sizeof (bitcount_be));
 421 
 422         /* pad out to 56 mod 64 */
 423         SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
 424 
 425         /* append length (before padding) */
 426         SHA1Update(ctx, bitcount_be, sizeof (bitcount_be));
 427 
 428         /* store state in digest */
 429         Encode(digest, ctx->state, sizeof (ctx->state));
 430 
 431         /* zeroize sensitive information */
 432         bzero(ctx, sizeof (*ctx));
 433 }
 434 
 435 
 436 #if !defined(__amd64)
 437 
 438 typedef uint32_t sha1word;
 439 
 440 /*
 441  * sparc optimization:
 442  *
 443  * on the sparc, we can load big endian 32-bit data easily.  note that
 444  * special care must be taken to ensure the address is 32-bit aligned.
 445  * in the interest of speed, we don't check to make sure, since
 446  * careful programming can guarantee this for us.
 447  */
 448 
 449 #if     defined(_BIG_ENDIAN)
 450 #define LOAD_BIG_32(addr)       (*(uint32_t *)(addr))
 451 
 452 #elif   defined(HAVE_HTONL)
 453 #define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
 454 
 455 #else
 456 /* little endian -- will work on big endian, but slowly */
 457 #define LOAD_BIG_32(addr)       \
 458         (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
 459 #endif  /* _BIG_ENDIAN */
 460 
 461 /*
 462  * SHA1Transform()
 463  */
 464 #if     defined(W_ARRAY)
 465 #define W(n) w[n]
 466 #else   /* !defined(W_ARRAY) */
 467 #define W(n) w_ ## n
 468 #endif  /* !defined(W_ARRAY) */
 469 
 470 
 471 #if     defined(__sparc)
 472 
 473 /*
 474  * sparc register window optimization:
 475  *
 476  * `a', `b', `c', `d', and `e' are passed into SHA1Transform
 477  * explicitly since it increases the number of registers available to
 478  * the compiler.  under this scheme, these variables can be held in
 479  * %i0 - %i4, which leaves more local and out registers available.
 480  *
 481  * purpose: sha1 transformation -- updates the digest based on `block'
 482  *   input: uint32_t    : bytes  1 -  4 of the digest
 483  *          uint32_t    : bytes  5 -  8 of the digest
 484  *          uint32_t    : bytes  9 - 12 of the digest
 485  *          uint32_t    : bytes 12 - 16 of the digest
 486  *          uint32_t    : bytes 16 - 20 of the digest
 487  *          SHA1_CTX *  : the context to update
 488  *          uint8_t [64]: the block to use to update the digest
 489  *  output: void
 490  */
 491 
 492 void
 493 SHA1Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e,
 494     SHA1_CTX *ctx, const uint8_t blk[64])
 495 {
 496         /*
 497          * sparc optimization:
 498          *
 499          * while it is somewhat counter-intuitive, on sparc, it is
 500          * more efficient to place all the constants used in this
 501          * function in an array and load the values out of the array
 502          * than to manually load the constants.  this is because
 503          * setting a register to a 32-bit value takes two ops in most
 504          * cases: a `sethi' and an `or', but loading a 32-bit value
 505          * from memory only takes one `ld' (or `lduw' on v9).  while
 506          * this increases memory usage, the compiler can find enough
 507          * other things to do while waiting to keep the pipeline does
 508          * not stall.  additionally, it is likely that many of these
 509          * constants are cached so that later accesses do not even go
 510          * out to the bus.
 511          *
 512          * this array is declared `static' to keep the compiler from
 513          * having to bcopy() this array onto the stack frame of
 514          * SHA1Transform() each time it is called -- which is
 515          * unacceptably expensive.
 516          *
 517          * the `const' is to ensure that callers are good citizens and
 518          * do not try to munge the array.  since these routines are
 519          * going to be called from inside multithreaded kernelland,
 520          * this is a good safety check. -- `sha1_consts' will end up in
 521          * .rodata.
 522          *
 523          * unfortunately, loading from an array in this manner hurts
 524          * performance under Intel.  So, there is a macro,
 525          * SHA1_CONST(), used in SHA1Transform(), that either expands to
 526          * a reference to this array, or to the actual constant,
 527          * depending on what platform this code is compiled for.
 528          */
 529 
 530         static const uint32_t sha1_consts[] = {
 531                 SHA1_CONST_0, SHA1_CONST_1, SHA1_CONST_2, SHA1_CONST_3
 532         };
 533 
 534         /*
 535          * general optimization:
 536          *
 537          * use individual integers instead of using an array.  this is a
 538          * win, although the amount it wins by seems to vary quite a bit.
 539          */
 540 
 541         uint32_t        w_0, w_1, w_2,  w_3,  w_4,  w_5,  w_6,  w_7;
 542         uint32_t        w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
 543 
 544         /*
 545          * sparc optimization:
 546          *
 547          * if `block' is already aligned on a 4-byte boundary, use
 548          * LOAD_BIG_32() directly.  otherwise, bcopy() into a
 549          * buffer that *is* aligned on a 4-byte boundary and then do
 550          * the LOAD_BIG_32() on that buffer.  benchmarks have shown
 551          * that using the bcopy() is better than loading the bytes
 552          * individually and doing the endian-swap by hand.
 553          *
 554          * even though it's quite tempting to assign to do:
 555          *
 556          * blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32));
 557          *
 558          * and only have one set of LOAD_BIG_32()'s, the compiler
 559          * *does not* like that, so please resist the urge.
 560          */
 561 
 562         if ((uintptr_t)blk & 0x3) {         /* not 4-byte aligned? */
 563                 bcopy(blk, ctx->buf_un.buf32,  sizeof (ctx->buf_un.buf32));
 564                 w_15 = LOAD_BIG_32(ctx->buf_un.buf32 + 15);
 565                 w_14 = LOAD_BIG_32(ctx->buf_un.buf32 + 14);
 566                 w_13 = LOAD_BIG_32(ctx->buf_un.buf32 + 13);
 567                 w_12 = LOAD_BIG_32(ctx->buf_un.buf32 + 12);
 568                 w_11 = LOAD_BIG_32(ctx->buf_un.buf32 + 11);
 569                 w_10 = LOAD_BIG_32(ctx->buf_un.buf32 + 10);
 570                 w_9  = LOAD_BIG_32(ctx->buf_un.buf32 +  9);
 571                 w_8  = LOAD_BIG_32(ctx->buf_un.buf32 +  8);
 572                 w_7  = LOAD_BIG_32(ctx->buf_un.buf32 +  7);
 573                 w_6  = LOAD_BIG_32(ctx->buf_un.buf32 +  6);
 574                 w_5  = LOAD_BIG_32(ctx->buf_un.buf32 +  5);
 575                 w_4  = LOAD_BIG_32(ctx->buf_un.buf32 +  4);
 576                 w_3  = LOAD_BIG_32(ctx->buf_un.buf32 +  3);
 577                 w_2  = LOAD_BIG_32(ctx->buf_un.buf32 +  2);
 578                 w_1  = LOAD_BIG_32(ctx->buf_un.buf32 +  1);
 579                 w_0  = LOAD_BIG_32(ctx->buf_un.buf32 +  0);
 580         } else {
 581                 /*LINTED*/
 582                 w_15 = LOAD_BIG_32(blk + 60);
 583                 /*LINTED*/
 584                 w_14 = LOAD_BIG_32(blk + 56);
 585                 /*LINTED*/
 586                 w_13 = LOAD_BIG_32(blk + 52);
 587                 /*LINTED*/
 588                 w_12 = LOAD_BIG_32(blk + 48);
 589                 /*LINTED*/
 590                 w_11 = LOAD_BIG_32(blk + 44);
 591                 /*LINTED*/
 592                 w_10 = LOAD_BIG_32(blk + 40);
 593                 /*LINTED*/
 594                 w_9  = LOAD_BIG_32(blk + 36);
 595                 /*LINTED*/
 596                 w_8  = LOAD_BIG_32(blk + 32);
 597                 /*LINTED*/
 598                 w_7  = LOAD_BIG_32(blk + 28);
 599                 /*LINTED*/
 600                 w_6  = LOAD_BIG_32(blk + 24);
 601                 /*LINTED*/
 602                 w_5  = LOAD_BIG_32(blk + 20);
 603                 /*LINTED*/
 604                 w_4  = LOAD_BIG_32(blk + 16);
 605                 /*LINTED*/
 606                 w_3  = LOAD_BIG_32(blk + 12);
 607                 /*LINTED*/
 608                 w_2  = LOAD_BIG_32(blk +  8);
 609                 /*LINTED*/
 610                 w_1  = LOAD_BIG_32(blk +  4);
 611                 /*LINTED*/
 612                 w_0  = LOAD_BIG_32(blk +  0);
 613         }
 614 #else   /* !defined(__sparc) */
 615 
 616 void /* CSTYLED */
 617 SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64])
 618 {
 619         /* CSTYLED */
 620         sha1word a = ctx->state[0];
 621         sha1word b = ctx->state[1];
 622         sha1word c = ctx->state[2];
 623         sha1word d = ctx->state[3];
 624         sha1word e = ctx->state[4];
 625 
 626 #if     defined(W_ARRAY)
 627         sha1word        w[16];
 628 #else   /* !defined(W_ARRAY) */
 629         sha1word        w_0, w_1, w_2,  w_3,  w_4,  w_5,  w_6,  w_7;
 630         sha1word        w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
 631 #endif  /* !defined(W_ARRAY) */
 632 
 633         W(0)  = LOAD_BIG_32(blk +  0);
 634         W(1)  = LOAD_BIG_32(blk +  4);
 635         W(2)  = LOAD_BIG_32(blk +  8);
 636         W(3)  = LOAD_BIG_32(blk + 12);
 637         W(4)  = LOAD_BIG_32(blk + 16);
 638         W(5)  = LOAD_BIG_32(blk + 20);
 639         W(6)  = LOAD_BIG_32(blk + 24);
 640         W(7)  = LOAD_BIG_32(blk + 28);
 641         W(8)  = LOAD_BIG_32(blk + 32);
 642         W(9)  = LOAD_BIG_32(blk + 36);
 643         W(10) = LOAD_BIG_32(blk + 40);
 644         W(11) = LOAD_BIG_32(blk + 44);
 645         W(12) = LOAD_BIG_32(blk + 48);
 646         W(13) = LOAD_BIG_32(blk + 52);
 647         W(14) = LOAD_BIG_32(blk + 56);
 648         W(15) = LOAD_BIG_32(blk + 60);
 649 
 650 #endif  /* !defined(__sparc) */
 651 
 652         /*
 653          * general optimization:
 654          *
 655          * even though this approach is described in the standard as
 656          * being slower algorithmically, it is 30-40% faster than the
 657          * "faster" version under SPARC, because this version has more
 658          * of the constraints specified at compile-time and uses fewer
 659          * variables (and therefore has better register utilization)
 660          * than its "speedier" brother.  (i've tried both, trust me)
 661          *
 662          * for either method given in the spec, there is an "assignment"
 663          * phase where the following takes place:
 664          *
 665          *      tmp = (main_computation);
 666          *      e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp;
 667          *
 668          * we can make the algorithm go faster by not doing this work,
 669          * but just pretending that `d' is now `e', etc. this works
 670          * really well and obviates the need for a temporary variable.
 671          * however, we still explicitly perform the rotate action,
 672          * since it is cheaper on SPARC to do it once than to have to
 673          * do it over and over again.
 674          */
 675 
 676         /* round 1 */
 677         e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */
 678         b = ROTATE_LEFT(b, 30);
 679 
 680         d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */
 681         a = ROTATE_LEFT(a, 30);
 682 
 683         c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */
 684         e = ROTATE_LEFT(e, 30);
 685 
 686         b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */
 687         d = ROTATE_LEFT(d, 30);
 688 
 689         a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */
 690         c = ROTATE_LEFT(c, 30);
 691 
 692         e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */
 693         b = ROTATE_LEFT(b, 30);
 694 
 695         d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */
 696         a = ROTATE_LEFT(a, 30);
 697 
 698         c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */
 699         e = ROTATE_LEFT(e, 30);
 700 
 701         b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */
 702         d = ROTATE_LEFT(d, 30);
 703 
 704         a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */
 705         c = ROTATE_LEFT(c, 30);
 706 
 707         e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */
 708         b = ROTATE_LEFT(b, 30);
 709 
 710         d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */
 711         a = ROTATE_LEFT(a, 30);
 712 
 713         c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */
 714         e = ROTATE_LEFT(e, 30);
 715 
 716         b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */
 717         d = ROTATE_LEFT(d, 30);
 718 
 719         a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */
 720         c = ROTATE_LEFT(c, 30);
 721 
 722         e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */
 723         b = ROTATE_LEFT(b, 30);
 724 
 725         W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);            /* 16 */
 726         d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0);
 727         a = ROTATE_LEFT(a, 30);
 728 
 729         W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);            /* 17 */
 730         c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0);
 731         e = ROTATE_LEFT(e, 30);
 732 
 733         W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);   /* 18 */
 734         b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0);
 735         d = ROTATE_LEFT(d, 30);
 736 
 737         W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);            /* 19 */
 738         a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0);
 739         c = ROTATE_LEFT(c, 30);
 740 
 741         /* round 2 */
 742         W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);            /* 20 */
 743         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1);
 744         b = ROTATE_LEFT(b, 30);
 745 
 746         W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);            /* 21 */
 747         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1);
 748         a = ROTATE_LEFT(a, 30);
 749 
 750         W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);            /* 22 */
 751         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1);
 752         e = ROTATE_LEFT(e, 30);
 753 
 754         W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);            /* 23 */
 755         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1);
 756         d = ROTATE_LEFT(d, 30);
 757 
 758         W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);            /* 24 */
 759         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1);
 760         c = ROTATE_LEFT(c, 30);
 761 
 762         W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);            /* 25 */
 763         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1);
 764         b = ROTATE_LEFT(b, 30);
 765 
 766         W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);  /* 26 */
 767         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1);
 768         a = ROTATE_LEFT(a, 30);
 769 
 770         W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);  /* 27 */
 771         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1);
 772         e = ROTATE_LEFT(e, 30);
 773 
 774         W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);  /* 28 */
 775         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1);
 776         d = ROTATE_LEFT(d, 30);
 777 
 778         W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 29 */
 779         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1);
 780         c = ROTATE_LEFT(c, 30);
 781 
 782         W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);  /* 30 */
 783         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1);
 784         b = ROTATE_LEFT(b, 30);
 785 
 786         W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);  /* 31 */
 787         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1);
 788         a = ROTATE_LEFT(a, 30);
 789 
 790         W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);            /* 32 */
 791         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1);
 792         e = ROTATE_LEFT(e, 30);
 793 
 794         W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);            /* 33 */
 795         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1);
 796         d = ROTATE_LEFT(d, 30);
 797 
 798         W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);   /* 34 */
 799         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1);
 800         c = ROTATE_LEFT(c, 30);
 801 
 802         W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);            /* 35 */
 803         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1);
 804         b = ROTATE_LEFT(b, 30);
 805 
 806         W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);            /* 36 */
 807         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1);
 808         a = ROTATE_LEFT(a, 30);
 809 
 810         W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);            /* 37 */
 811         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1);
 812         e = ROTATE_LEFT(e, 30);
 813 
 814         W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);            /* 38 */
 815         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1);
 816         d = ROTATE_LEFT(d, 30);
 817 
 818         W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);            /* 39 */
 819         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1);
 820         c = ROTATE_LEFT(c, 30);
 821 
 822         /* round 3 */
 823         W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);            /* 40 */
 824         e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2);
 825         b = ROTATE_LEFT(b, 30);
 826 
 827         W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);            /* 41 */
 828         d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2);
 829         a = ROTATE_LEFT(a, 30);
 830 
 831         W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);  /* 42 */
 832         c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2);
 833         e = ROTATE_LEFT(e, 30);
 834 
 835         W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);  /* 43 */
 836         b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2);
 837         d = ROTATE_LEFT(d, 30);
 838 
 839         W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);  /* 44 */
 840         a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2);
 841         c = ROTATE_LEFT(c, 30);
 842 
 843         W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 45 */
 844         e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2);
 845         b = ROTATE_LEFT(b, 30);
 846 
 847         W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);  /* 46 */
 848         d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2);
 849         a = ROTATE_LEFT(a, 30);
 850 
 851         W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);  /* 47 */
 852         c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2);
 853         e = ROTATE_LEFT(e, 30);
 854 
 855         W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);            /* 48 */
 856         b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2);
 857         d = ROTATE_LEFT(d, 30);
 858 
 859         W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);            /* 49 */
 860         a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2);
 861         c = ROTATE_LEFT(c, 30);
 862 
 863         W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);   /* 50 */
 864         e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2);
 865         b = ROTATE_LEFT(b, 30);
 866 
 867         W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);            /* 51 */
 868         d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2);
 869         a = ROTATE_LEFT(a, 30);
 870 
 871         W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);            /* 52 */
 872         c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2);
 873         e = ROTATE_LEFT(e, 30);
 874 
 875         W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);            /* 53 */
 876         b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2);
 877         d = ROTATE_LEFT(d, 30);
 878 
 879         W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);            /* 54 */
 880         a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2);
 881         c = ROTATE_LEFT(c, 30);
 882 
 883         W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);            /* 55 */
 884         e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2);
 885         b = ROTATE_LEFT(b, 30);
 886 
 887         W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);            /* 56 */
 888         d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2);
 889         a = ROTATE_LEFT(a, 30);
 890 
 891         W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);            /* 57 */
 892         c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2);
 893         e = ROTATE_LEFT(e, 30);
 894 
 895         W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);  /* 58 */
 896         b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2);
 897         d = ROTATE_LEFT(d, 30);
 898 
 899         W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);  /* 59 */
 900         a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2);
 901         c = ROTATE_LEFT(c, 30);
 902 
 903         /* round 4 */
 904         W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);  /* 60 */
 905         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3);
 906         b = ROTATE_LEFT(b, 30);
 907 
 908         W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 61 */
 909         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3);
 910         a = ROTATE_LEFT(a, 30);
 911 
 912         W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);  /* 62 */
 913         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3);
 914         e = ROTATE_LEFT(e, 30);
 915 
 916         W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);  /* 63 */
 917         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3);
 918         d = ROTATE_LEFT(d, 30);
 919 
 920         W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);            /* 64 */
 921         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3);
 922         c = ROTATE_LEFT(c, 30);
 923 
 924         W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);            /* 65 */
 925         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3);
 926         b = ROTATE_LEFT(b, 30);
 927 
 928         W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);   /* 66 */
 929         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3);
 930         a = ROTATE_LEFT(a, 30);
 931 
 932         W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);            /* 67 */
 933         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3);
 934         e = ROTATE_LEFT(e, 30);
 935 
 936         W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);            /* 68 */
 937         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3);
 938         d = ROTATE_LEFT(d, 30);
 939 
 940         W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);            /* 69 */
 941         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3);
 942         c = ROTATE_LEFT(c, 30);
 943 
 944         W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);            /* 70 */
 945         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3);
 946         b = ROTATE_LEFT(b, 30);
 947 
 948         W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);            /* 71 */
 949         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3);
 950         a = ROTATE_LEFT(a, 30);
 951 
 952         W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);            /* 72 */
 953         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3);
 954         e = ROTATE_LEFT(e, 30);
 955 
 956         W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);            /* 73 */
 957         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3);
 958         d = ROTATE_LEFT(d, 30);
 959 
 960         W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);  /* 74 */
 961         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3);
 962         c = ROTATE_LEFT(c, 30);
 963 
 964         W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);  /* 75 */
 965         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3);
 966         b = ROTATE_LEFT(b, 30);
 967 
 968         W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);  /* 76 */
 969         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3);
 970         a = ROTATE_LEFT(a, 30);
 971 
 972         W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 77 */
 973         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3);
 974         e = ROTATE_LEFT(e, 30);
 975 
 976         W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);  /* 78 */
 977         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3);
 978         d = ROTATE_LEFT(d, 30);
 979 
 980         W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);  /* 79 */
 981 
 982         ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) +
 983             SHA1_CONST(3);
 984         ctx->state[1] += b;
 985         ctx->state[2] += ROTATE_LEFT(c, 30);
 986         ctx->state[3] += d;
 987         ctx->state[4] += e;
 988 
 989         /* zeroize sensitive information */
 990         W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0;
 991         W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0;
 992 }
 993 #endif  /* !__amd64 */
 994 
 995 
 996 /*
 997  * Encode()
 998  *
 999  * purpose: to convert a list of numbers from little endian to big endian
1000  *   input: uint8_t *   : place to store the converted big endian numbers
1001  *          uint32_t *  : place to get numbers to convert from
1002  *          size_t      : the length of the input in bytes
1003  *  output: void
1004  */
1005 
1006 static void
1007 Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input,
1008     size_t len)
1009 {
1010         size_t          i, j;
1011 
1012 #if     defined(__sparc)
1013         if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
1014                 for (i = 0, j = 0; j < len; i++, j += 4) {
1015                         /* LINTED: pointer alignment */
1016                         *((uint32_t *)(output + j)) = input[i];
1017                 }
1018         } else {
1019 #endif  /* little endian -- will work on big endian, but slowly */
1020                 for (i = 0, j = 0; j < len; i++, j += 4) {
1021                         output[j]       = (input[i] >> 24) & 0xff;
1022                         output[j + 1]   = (input[i] >> 16) & 0xff;
1023                         output[j + 2]   = (input[i] >>  8) & 0xff;
1024                         output[j + 3]   = input[i] & 0xff;
1025                 }
1026 #if     defined(__sparc)
1027         }
1028 #endif
1029 }