1 #!/usr/bin/env perl
   2 #
   3 # ====================================================================
   4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
   5 # project. The module is, however, dual licensed under OpenSSL and
   6 # CRYPTOGAMS licenses depending on where you obtain it. For further
   7 # details see http://www.openssl.org/~appro/cryptogams/.
   8 # ====================================================================
   9 #
  10 # 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
  11 # "hand-coded assembler"] doesn't stand for the whole improvement
  12 # coefficient. It turned out that eliminating RC4_CHAR from config
  13 # line results in ~40% improvement (yes, even for C implementation).
  14 # Presumably it has everything to do with AMD cache architecture and
  15 # RAW or whatever penalties. Once again! The module *requires* config
  16 # line *without* RC4_CHAR! As for coding "secret," I bet on partial
  17 # register arithmetics. For example instead of 'inc %r8; and $255,%r8'
  18 # I simply 'inc %r8b'. Even though optimization manual discourages
  19 # to operate on partial registers, it turned out to be the best bet.
  20 # At least for AMD... How IA32E would perform remains to be seen...
  21 
  22 # As was shown by Marc Bevand reordering of couple of load operations
  23 # results in even higher performance gain of 3.3x:-) At least on
  24 # Opteron... For reference, 1x in this case is RC4_CHAR C-code
  25 # compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
  26 # Latter means that if you want to *estimate* what to expect from
  27 # *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
  28 
  29 # Intel P4 EM64T core was found to run the AMD64 code really slow...
  30 # The only way to achieve comparable performance on P4 was to keep
  31 # RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
  32 # compose blended code, which would perform even within 30% marginal
  33 # on either AMD and Intel platforms, I implement both cases. See
  34 # rc4_skey.c for further details...
  35 
  36 # P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing 
  37 # those with add/sub results in 50% performance improvement of folded
  38 # loop...
  39 
  40 # As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
  41 # performance by >30% [unlike P4 32-bit case that is]. But this is
  42 # provided that loads are reordered even more aggressively! Both code
  43 # pathes, AMD64 and EM64T, reorder loads in essentially same manner
  44 # as my IA-64 implementation. On Opteron this resulted in modest 5%
  45 # improvement [I had to test it], while final Intel P4 performance
  46 # achieves respectful 432MBps on 2.8GHz processor now. For reference.
  47 # If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
  48 # RC4_INT code-path. While if executed on Opteron, it's only 25%
  49 # slower than the RC4_INT one [meaning that if CPU µ-arch detection
  50 # is not implemented, then this final RC4_CHAR code-path should be
  51 # preferred, as it provides better *all-round* performance].
  52 
  53 # Intel Core2 was observed to perform poorly on both code paths:-( It
  54 # apparently suffers from some kind of partial register stall, which
  55 # occurs in 64-bit mode only [as virtually identical 32-bit loop was
  56 # observed to outperform 64-bit one by almost 50%]. Adding two movzb to
  57 # cloop1 boosts its performance by 80%! This loop appears to be optimal
  58 # fit for Core2 and therefore the code was modified to skip cloop8 on
  59 # this CPU.
  60 
  61 #
  62 # OpenSolaris OS modifications
  63 #
  64 # Sun elects to use this software under the BSD license.
  65 #
  66 # This source originates from OpenSSL file rc4-x86_64.pl at
  67 # ftp://ftp.openssl.org/snapshot/openssl-0.9.8-stable-SNAP-20080131.tar.gz
  68 # (presumably for future OpenSSL release 0.9.8h), with these changes:
  69 #
  70 # 1. Added some comments, "use strict", and declared all variables.
  71 #
  72 # 2. Added OpenSolaris ENTRY_NP/SET_SIZE macros from
  73 # /usr/include/sys/asm_linkage.h, .ident keywords, and lint(1B) guards.
  74 #
  75 # 3. Changed function name from RC4() to arcfour_crypt() and RC4_set_key()
  76 # to arcfour_key_init(), and changed the parameter order for both to that
  77 # used by OpenSolaris.
  78 #
  79 # 4. The current method of using cpuid feature bits 20 (NX) or 28 (HTT) from
  80 # function OPENSSL_ia32_cpuid() to distinguish Intel/AMD does not work for
  81 # some newer AMD64 processors, as these bits are set on both Intel EM64T
  82 # processors and newer AMD64 processors.  I replaced this with code to use CPUID
  83 # instruction subfunction EAX=0 to determine if we're running on "GenuineIntel"
  84 # or not. The result decides whether to use a
  85 #       * 1-byte key array (label .LRC4_CHAR, optimal on Intel EM64T) or a
  86 #       * 4-byte key array (Labels .Lloop1 and .Lloop8, optimal on AMD64).
  87 #
  88 # 5. Removed x86_64-xlate.pl script (not needed for as(1) or gas(1) assemblers).
  89 #
  90 # 6. Removed Lcloop8 code (slower than Lcloop1 on EM64T and not used on AMD64).
  91 #
  92 
  93 use strict;
  94 my ($code, $dat, $inp, $out, $len, $idx, $ido, $i, @XX, @TX, $YY, $TY);
  95 my $output = shift;
  96 open STDOUT,">$output";
  97 
  98 #
  99 # Parameters
 100 #
 101 
 102 # OpenSSL:
 103 # void RC4(RC4_KEY *key, unsigned long len, const unsigned char *indata,
 104 #       unsigned char *outdata);
 105 #$dat="%rdi";       # arg1
 106 #$len="%rsi";       # arg2
 107 #$inp="%rdx";       # arg3
 108 #$out="%rcx";       # arg4
 109 
 110 # OpenSolaris:
 111 # void arcfour_crypt(ARCFour_key *key, uchar_t *in, uchar_t *out, size_t len);
 112 $dat="%rdi";        # arg1
 113 $inp="%rsi";        # arg2
 114 $out="%rdx";        # arg3
 115 $len="%rcx";        # arg4
 116 
 117 #
 118 # Register variables
 119 #
 120 # $XX[0] is key->i (aka key->x), $XX[1] is a temporary.
 121 # $TX[0] and $TX[1] are temporaries.
 122 # $YY is key->j (aka key->y).
 123 # $TY is a temporary.
 124 #
 125 @XX=("%r8","%r10");
 126 @TX=("%r9","%r11");
 127 $YY="%r12";
 128 $TY="%r13";
 129 
 130 $code=<<___;
 131 #if !defined(lint) && !defined(__lint)
 132 
 133         .ident  "@(#)arcfour-x86_64.pl  1.1     08/03/20 SMI"
 134 
 135 #include <sys/asm_linkage.h>
 136 
 137 
 138 ENTRY_NP(arcfour_crypt)
 139         /* EXPORT DELETE START */
 140 
 141         or      $len,$len # If (len == 0) return
 142         jne     .Lentry
 143         ret
 144 .Lentry:
 145         push    %r12
 146         push    %r13
 147 
 148         / Set $dat to beginning of array, key->arr[0]
 149         add     \$8,$dat
 150         / Get key->j
 151         movl    -8($dat),$XX[0]#d
 152         / Get key->i
 153         movl    -4($dat),$YY#d
 154 
 155         /
 156         / Use a 1-byte data array, on Intel P4 EM64T,
 157         / which is more efficient there,
 158         / or a 4-byte data array (for AMD AMD64).
 159         /
 160 
 161         / If RC4_CHAR flag set (Intel EM64T), then use 1-byte array
 162         cmpl    \$-1,256($dat)
 163         je      .LRC4_CHAR
 164         / otherwise use 4-byte integer array (AMD64)
 165         inc     $XX[0]#b
 166         movl    ($dat,$XX[0],4),$TX[0]#d
 167         test    \$-8,$len
 168         jz      .Lloop1
 169         jmp     .Lloop8
 170 
 171 .align  16
 172 .Lloop8:
 173         /
 174         / This code is for use with a 4-byte integer data array, which is
 175         / more efficient on AMD64 Athlon and Opteron-class processors.
 176         /
 177 ___
 178 for ($i=0;$i<8;$i++) {
 179 $code.=<<___;
 180         add     $TX[0]#b,$YY#b
 181         mov     $XX[0],$XX[1]
 182         movl    ($dat,$YY,4),$TY#d
 183         ror     \$8,%rax                        # ror is redundant when $i=0
 184         inc     $XX[1]#b
 185         movl    ($dat,$XX[1],4),$TX[1]#d
 186         cmp     $XX[1],$YY
 187         movl    $TX[0]#d,($dat,$YY,4)
 188         cmove   $TX[0],$TX[1]
 189         movl    $TY#d,($dat,$XX[0],4)
 190         add     $TX[0]#b,$TY#b
 191         movb    ($dat,$TY,4),%al
 192 ___
 193 push(@TX,shift(@TX)); push(@XX,shift(@XX));     # "rotate" registers
 194 }
 195 $code.=<<___;
 196         ror     \$8,%rax
 197         sub     \$8,$len
 198 
 199         xor     ($inp),%rax
 200         add     \$8,$inp
 201         mov     %rax,($out)
 202         add     \$8,$out
 203 
 204         test    \$-8,$len
 205         jnz     .Lloop8
 206         cmp     \$0,$len
 207         jne     .Lloop1
 208 ___
 209 $code.=<<___;
 210 .Lexit:
 211         /
 212         / Cleanup and exit code
 213         /
 214         / --i to undo ++i done at entry
 215         sub     \$1,$XX[0]#b
 216         / set key->i
 217         movl    $XX[0]#d,-8($dat)
 218         / set key->j
 219         movl    $YY#d,-4($dat)
 220 
 221         pop     %r13
 222         pop     %r12
 223         ret
 224 .align  16
 225 .Lloop1:
 226         add     $TX[0]#b,$YY#b
 227         movl    ($dat,$YY,4),$TY#d
 228         movl    $TX[0]#d,($dat,$YY,4)
 229         movl    $TY#d,($dat,$XX[0],4)
 230         add     $TY#b,$TX[0]#b
 231         inc     $XX[0]#b
 232         movl    ($dat,$TX[0],4),$TY#d
 233         movl    ($dat,$XX[0],4),$TX[0]#d
 234         xorb    ($inp),$TY#b
 235         inc     $inp
 236         movb    $TY#b,($out)
 237         inc     $out
 238         dec     $len
 239         jnz     .Lloop1
 240         jmp     .Lexit
 241 
 242 
 243 .align  16
 244 .LRC4_CHAR:
 245         /
 246         / This code is for use with a 1-byte integer data array, which is
 247         / more efficient on Intel P4 EM64T-class processors.
 248         /
 249         add     \$1,$XX[0]#b
 250         movzb   ($dat,$XX[0]),$TX[0]#d
 251         jmp     .Lcloop1
 252 
 253 .align  16
 254 .Lcloop1:
 255         add     $TX[0]#b,$YY#b
 256         movzb   ($dat,$YY),$TY#d
 257         movb    $TX[0]#b,($dat,$YY)
 258         movb    $TY#b,($dat,$XX[0])
 259         add     $TX[0]#b,$TY#b
 260         add     \$1,$XX[0]#b
 261         / Intel Optimization (preload $TY and $XX[0]):
 262         movzb   $TY#b,$TY#d
 263         movzb   $XX[0]#b,$XX[0]#d
 264         movzb   ($dat,$TY),$TY#d
 265         movzb   ($dat,$XX[0]),$TX[0]#d
 266         xorb    ($inp),$TY#b
 267         lea     1($inp),$inp
 268         movb    $TY#b,($out)
 269         lea     1($out),$out
 270         sub     \$1,$len
 271         jnz     .Lcloop1
 272         jmp     .Lexit
 273 
 274         /* EXPORT DELETE END */
 275         ret
 276 SET_SIZE(arcfour_crypt)
 277 ___
 278 
 279 
 280 #
 281 # Parameters
 282 #
 283 
 284 # OpenSSL:
 285 # void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data);
 286 #$dat="%rdi";       # arg1
 287 #$len="%rsi";       # arg2
 288 #$inp="%rdx";       # arg3
 289 
 290 # OpenSolaris:
 291 # void arcfour_key_init(ARCFour_key *key, uchar_t *keyval, int keyvallen);
 292 $dat="%rdi";        # arg1
 293 $inp="%rsi";        # arg2
 294 $len="%rdx";        # arg3
 295 
 296 # Temporaries
 297 $idx="%r8";
 298 $ido="%r9";
 299 
 300 $code.=<<___;
 301         / int arcfour_crypt_on_intel(void);
 302 .extern arcfour_crypt_on_intel
 303 
 304 ENTRY_NP(arcfour_key_init)
 305         /* EXPORT DELETE START */
 306 
 307         / Find out if we're running on Intel or something else (e.g., AMD64).
 308         / This sets %eax to 1 for Intel, otherwise 0.
 309         push    %rdi            / Save arg1
 310         push    %rsi            / Save arg2
 311         push    %rdx            / Save arg3
 312         call    arcfour_crypt_on_intel
 313         pop     %rdx            / Restore arg3
 314         pop     %rsi            / Restore arg2
 315         pop     %rdi            / Restore arg1
 316 
 317         / Set $dat to beginning of array, key->arr[0]
 318         lea     8($dat),$dat
 319         lea     ($inp,$len),$inp
 320         neg     $len
 321         mov     $len,%rcx
 322         / Zeroed below, as %eax contains a flag from arcfour_crypt_on_intel():
 323         /xor    %eax,%eax
 324         xor     $ido,$ido
 325         xor     %r10,%r10
 326         xor     %r11,%r11
 327 
 328         /
 329         / Use a 1-byte data array, on Intel P4 EM64T,
 330         / which is more efficient there,
 331         / or a 4-byte data array (for AMD AMD64).
 332         /
 333         cmp     \$1,%eax        / Test if Intel
 334         mov     \$0,%eax        / Zero eax without modifying flags
 335         je      .Lc1stloop      / If Intel then use a 1-byte array,
 336         jmp     .Lw1stloop      / otherwise use a 4-byte array.
 337 
 338 .align  16
 339 .Lw1stloop:
 340         / AMD64 (4-byte array)
 341         mov     %eax,($dat,%rax,4)
 342         add     \$1,%al
 343         jnc     .Lw1stloop
 344 
 345         xor     $ido,$ido
 346         xor     $idx,$idx
 347 .align  16
 348 .Lw2ndloop:
 349         mov     ($dat,$ido,4),%r10d
 350         add     ($inp,$len,1),$idx#b
 351         add     %r10b,$idx#b
 352         add     \$1,$len
 353         mov     ($dat,$idx,4),%r11d
 354         cmovz   %rcx,$len
 355         mov     %r10d,($dat,$idx,4)
 356         mov     %r11d,($dat,$ido,4)
 357         add     \$1,$ido#b
 358         jnc     .Lw2ndloop
 359         jmp     .Lexit_key
 360 
 361 .align  16
 362 .Lc1stloop:
 363         / Intel EM64T (1-byte array)
 364         mov     %al,($dat,%rax)
 365         add     \$1,%al
 366         jnc     .Lc1stloop
 367 
 368         xor     $ido,$ido
 369         xor     $idx,$idx
 370 .align  16
 371 .Lc2ndloop:
 372         mov     ($dat,$ido),%r10b
 373         add     ($inp,$len),$idx#b
 374         add     %r10b,$idx#b
 375         add     \$1,$len
 376         mov     ($dat,$idx),%r11b
 377         jnz     .Lcnowrap
 378         mov     %rcx,$len
 379 .Lcnowrap:
 380         mov     %r10b,($dat,$idx)
 381         mov     %r11b,($dat,$ido)
 382         add     \$1,$ido#b
 383         jnc     .Lc2ndloop
 384         movl    \$-1,256($dat)
 385 
 386 .align  16
 387 .Lexit_key:
 388         xor     %eax,%eax
 389         mov     %eax,-8($dat)
 390         mov     %eax,-4($dat)
 391 
 392         /* EXPORT DELETE END */
 393         ret
 394 SET_SIZE(arcfour_key_init)
 395 .asciz  "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
 396 
 397 #else
 398         /* LINTED */
 399         /* Nothing to be linted in this file--it's pure assembly source. */
 400 #endif /* !lint && !__lint */
 401 ___
 402 
 403 $code =~ s/#([bwd])/$1/gm;
 404 
 405 print $code;
 406 
 407 close STDOUT;