1 /*
   2  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
   3  * Use is subject to license terms.
   4  */
   5 
   6 #pragma ident   "@(#)sha2.c     1.7     07/04/10 SMI"
   7 
   8 
   9 /*
  10  * The basic framework for this code came from the reference
  11  * implementation for MD5.  That implementation is Copyright (C)
  12  * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
  13  *
  14  * License to copy and use this software is granted provided that it
  15  * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
  16  * Algorithm" in all material mentioning or referencing this software
  17  * or this function.
  18  *
  19  * License is also granted to make and use derivative works provided
  20  * that such works are identified as "derived from the RSA Data
  21  * Security, Inc. MD5 Message-Digest Algorithm" in all material
  22  * mentioning or referencing the derived work.
  23  *
  24  * RSA Data Security, Inc. makes no representations concerning either
  25  * the merchantability of this software or the suitability of this
  26  * software for any particular purpose. It is provided "as is"
  27  * without express or implied warranty of any kind.
  28  *
  29  * These notices must be retained in any copies of any part of this
  30  * documentation and/or software.
  31  *
  32  * NOTE: Cleaned-up and optimized, version of SHA2, based on the FIPS 180-2
  33  * standard, available at http://www.itl.nist.gov/div897/pubs/fip180-2.htm
  34  * Not as fast as one would like -- further optimizations are encouraged
  35  * and appreciated.
  36  */
  37 
  38 #include <sys/types.h>
  39 #include <sys/param.h>
  40 #include <sys/systm.h>
  41 #include <sys/sysmacros.h>
  42 #define _SHA2_IMPL
  43 #include <sys/sha2.h>
  44 #include <sys/sha2_consts.h>
  45 
  46 #ifndef _KERNEL
  47 
  48 #include <strings.h>
  49 #include <stdlib.h>
  50 #include <errno.h>
  51 
  52 #pragma weak SHA256Update = SHA2Update
  53 #pragma weak SHA384Update = SHA2Update
  54 #pragma weak SHA512Update = SHA2Update
  55 
  56 #pragma weak SHA256Final = SHA2Final
  57 #pragma weak SHA384Final = SHA2Final
  58 #pragma weak SHA512Final = SHA2Final
  59 
  60 #endif  /* !_KERNEL */
  61 
  62 #ifdef _KERNEL
  63 #include <sys/cmn_err.h>
  64 #endif /* _KERNEL */
  65 
  66 static void Encode(uint8_t *, uint32_t *, size_t);
  67 static void Encode64(uint8_t *, uint64_t *, size_t);
  68 static void SHA256Transform(SHA2_CTX *, const uint8_t *);
  69 static void SHA512Transform(SHA2_CTX *, const uint8_t *);
  70 
  71 static uint8_t PADDING[128] = { 0x80, /* all zeros */ };
  72 
  73 /* Ch and Maj are the basic SHA2 functions. */
  74 #define Ch(b, c, d)     (((b) & (c)) ^ ((~b) & (d)))
  75 #define Maj(b, c, d)    (((b) & (c)) ^ ((b) & (d)) ^ ((c) & (d)))
  76 
  77 /* Rotates x right n bits. */
  78 #define ROTR(x, n)      \
  79         (((x) >> (n)) | ((x) << ((sizeof (x) * NBBY)-(n))))
  80 
  81 /* Shift x right n bits */
  82 #define SHR(x, n)       ((x) >> (n))
  83 
  84 /* SHA256 Functions */
  85 #define BIGSIGMA0_256(x)        (ROTR((x), 2) ^ ROTR((x), 13) ^ ROTR((x), 22))
  86 #define BIGSIGMA1_256(x)        (ROTR((x), 6) ^ ROTR((x), 11) ^ ROTR((x), 25))
  87 #define SIGMA0_256(x)           (ROTR((x), 7) ^ ROTR((x), 18) ^ SHR((x), 3))
  88 #define SIGMA1_256(x)           (ROTR((x), 17) ^ ROTR((x), 19) ^ SHR((x), 10))
  89 
  90 #define SHA256ROUND(a, b, c, d, e, f, g, h, i, w)                       \
  91         T1 = h + BIGSIGMA1_256(e) + Ch(e, f, g) + SHA256_CONST(i) + w;  \
  92         d += T1;                                                        \
  93         T2 = BIGSIGMA0_256(a) + Maj(a, b, c);                           \
  94         h = T1 + T2
  95 
  96 /* SHA384/512 Functions */
  97 #define BIGSIGMA0(x)    (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
  98 #define BIGSIGMA1(x)    (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
  99 #define SIGMA0(x)       (ROTR((x), 1) ^ ROTR((x), 8) ^ SHR((x), 7))
 100 #define SIGMA1(x)       (ROTR((x), 19) ^ ROTR((x), 61) ^ SHR((x), 6))
 101 #define SHA512ROUND(a, b, c, d, e, f, g, h, i, w)                       \
 102         T1 = h + BIGSIGMA1(e) + Ch(e, f, g) + SHA512_CONST(i) + w;      \
 103         d += T1;                                                        \
 104         T2 = BIGSIGMA0(a) + Maj(a, b, c);                               \
 105         h = T1 + T2
 106 
 107 /*
 108  * sparc optimization:
 109  *
 110  * on the sparc, we can load big endian 32-bit data easily.  note that
 111  * special care must be taken to ensure the address is 32-bit aligned.
 112  * in the interest of speed, we don't check to make sure, since
 113  * careful programming can guarantee this for us.
 114  */
 115 
 116 #if     defined(_BIG_ENDIAN)
 117 
 118 #define LOAD_BIG_32(addr)       (*(uint32_t *)(addr))
 119 
 120 #else   /* little endian -- will work on big endian, but slowly */
 121 
 122 #define LOAD_BIG_32(addr)       \
 123         (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
 124 #endif
 125 
 126 
 127 #if     defined(_BIG_ENDIAN)
 128 
 129 #define LOAD_BIG_64(addr)       (*(uint64_t *)(addr))
 130 
 131 #else   /* little endian -- will work on big endian, but slowly */
 132 
 133 #define LOAD_BIG_64(addr)       \
 134         (((uint64_t)(addr)[0] << 56) | ((uint64_t)(addr)[1] << 48) |        \
 135             ((uint64_t)(addr)[2] << 40) | ((uint64_t)(addr)[3] << 32) |     \
 136             ((uint64_t)(addr)[4] << 24) | ((uint64_t)(addr)[5] << 16) |     \
 137             ((uint64_t)(addr)[6] << 8) | (uint64_t)(addr)[7])
 138 
 139 #endif
 140 
 141 
 142 /* SHA256 Transform */
 143 
 144 static void
 145 SHA256Transform(SHA2_CTX *ctx, const uint8_t *blk)
 146 {
 147 
 148         uint32_t a = ctx->state.s32[0];
 149         uint32_t b = ctx->state.s32[1];
 150         uint32_t c = ctx->state.s32[2];
 151         uint32_t d = ctx->state.s32[3];
 152         uint32_t e = ctx->state.s32[4];
 153         uint32_t f = ctx->state.s32[5];
 154         uint32_t g = ctx->state.s32[6];
 155         uint32_t h = ctx->state.s32[7];
 156 
 157         uint32_t w0, w1, w2, w3, w4, w5, w6, w7;
 158         uint32_t w8, w9, w10, w11, w12, w13, w14, w15;
 159         uint32_t T1, T2;
 160 
 161 #if     defined(__sparc)
 162         static const uint32_t sha256_consts[] = {
 163                 SHA256_CONST_0, SHA256_CONST_1, SHA256_CONST_2,
 164                 SHA256_CONST_3, SHA256_CONST_4, SHA256_CONST_5,
 165                 SHA256_CONST_6, SHA256_CONST_7, SHA256_CONST_8,
 166                 SHA256_CONST_9, SHA256_CONST_10, SHA256_CONST_11,
 167                 SHA256_CONST_12, SHA256_CONST_13, SHA256_CONST_14,
 168                 SHA256_CONST_15, SHA256_CONST_16, SHA256_CONST_17,
 169                 SHA256_CONST_18, SHA256_CONST_19, SHA256_CONST_20,
 170                 SHA256_CONST_21, SHA256_CONST_22, SHA256_CONST_23,
 171                 SHA256_CONST_24, SHA256_CONST_25, SHA256_CONST_26,
 172                 SHA256_CONST_27, SHA256_CONST_28, SHA256_CONST_29,
 173                 SHA256_CONST_30, SHA256_CONST_31, SHA256_CONST_32,
 174                 SHA256_CONST_33, SHA256_CONST_34, SHA256_CONST_35,
 175                 SHA256_CONST_36, SHA256_CONST_37, SHA256_CONST_38,
 176                 SHA256_CONST_39, SHA256_CONST_40, SHA256_CONST_41,
 177                 SHA256_CONST_42, SHA256_CONST_43, SHA256_CONST_44,
 178                 SHA256_CONST_45, SHA256_CONST_46, SHA256_CONST_47,
 179                 SHA256_CONST_48, SHA256_CONST_49, SHA256_CONST_50,
 180                 SHA256_CONST_51, SHA256_CONST_52, SHA256_CONST_53,
 181                 SHA256_CONST_54, SHA256_CONST_55, SHA256_CONST_56,
 182                 SHA256_CONST_57, SHA256_CONST_58, SHA256_CONST_59,
 183                 SHA256_CONST_60, SHA256_CONST_61, SHA256_CONST_62,
 184                 SHA256_CONST_63
 185         };
 186 #endif
 187 
 188         if ((uintptr_t)blk & 0x3) {         /* not 4-byte aligned? */
 189                 bcopy(blk, ctx->buf_un.buf32,  sizeof (ctx->buf_un.buf32));
 190                 blk = (uint8_t *)ctx->buf_un.buf32;
 191         }
 192 
 193         /* LINTED E_BAD_PTR_CAST_ALIGN */
 194         w0 =  LOAD_BIG_32(blk + 4 * 0);
 195         SHA256ROUND(a, b, c, d, e, f, g, h, 0, w0);
 196         /* LINTED E_BAD_PTR_CAST_ALIGN */
 197         w1 =  LOAD_BIG_32(blk + 4 * 1);
 198         SHA256ROUND(h, a, b, c, d, e, f, g, 1, w1);
 199         /* LINTED E_BAD_PTR_CAST_ALIGN */
 200         w2 =  LOAD_BIG_32(blk + 4 * 2);
 201         SHA256ROUND(g, h, a, b, c, d, e, f, 2, w2);
 202         /* LINTED E_BAD_PTR_CAST_ALIGN */
 203         w3 =  LOAD_BIG_32(blk + 4 * 3);
 204         SHA256ROUND(f, g, h, a, b, c, d, e, 3, w3);
 205         /* LINTED E_BAD_PTR_CAST_ALIGN */
 206         w4 =  LOAD_BIG_32(blk + 4 * 4);
 207         SHA256ROUND(e, f, g, h, a, b, c, d, 4, w4);
 208         /* LINTED E_BAD_PTR_CAST_ALIGN */
 209         w5 =  LOAD_BIG_32(blk + 4 * 5);
 210         SHA256ROUND(d, e, f, g, h, a, b, c, 5, w5);
 211         /* LINTED E_BAD_PTR_CAST_ALIGN */
 212         w6 =  LOAD_BIG_32(blk + 4 * 6);
 213         SHA256ROUND(c, d, e, f, g, h, a, b, 6, w6);
 214         /* LINTED E_BAD_PTR_CAST_ALIGN */
 215         w7 =  LOAD_BIG_32(blk + 4 * 7);
 216         SHA256ROUND(b, c, d, e, f, g, h, a, 7, w7);
 217         /* LINTED E_BAD_PTR_CAST_ALIGN */
 218         w8 =  LOAD_BIG_32(blk + 4 * 8);
 219         SHA256ROUND(a, b, c, d, e, f, g, h, 8, w8);
 220         /* LINTED E_BAD_PTR_CAST_ALIGN */
 221         w9 =  LOAD_BIG_32(blk + 4 * 9);
 222         SHA256ROUND(h, a, b, c, d, e, f, g, 9, w9);
 223         /* LINTED E_BAD_PTR_CAST_ALIGN */
 224         w10 =  LOAD_BIG_32(blk + 4 * 10);
 225         SHA256ROUND(g, h, a, b, c, d, e, f, 10, w10);
 226         /* LINTED E_BAD_PTR_CAST_ALIGN */
 227         w11 =  LOAD_BIG_32(blk + 4 * 11);
 228         SHA256ROUND(f, g, h, a, b, c, d, e, 11, w11);
 229         /* LINTED E_BAD_PTR_CAST_ALIGN */
 230         w12 =  LOAD_BIG_32(blk + 4 * 12);
 231         SHA256ROUND(e, f, g, h, a, b, c, d, 12, w12);
 232         /* LINTED E_BAD_PTR_CAST_ALIGN */
 233         w13 =  LOAD_BIG_32(blk + 4 * 13);
 234         SHA256ROUND(d, e, f, g, h, a, b, c, 13, w13);
 235         /* LINTED E_BAD_PTR_CAST_ALIGN */
 236         w14 =  LOAD_BIG_32(blk + 4 * 14);
 237         SHA256ROUND(c, d, e, f, g, h, a, b, 14, w14);
 238         /* LINTED E_BAD_PTR_CAST_ALIGN */
 239         w15 =  LOAD_BIG_32(blk + 4 * 15);
 240         SHA256ROUND(b, c, d, e, f, g, h, a, 15, w15);
 241 
 242         w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
 243         SHA256ROUND(a, b, c, d, e, f, g, h, 16, w0);
 244         w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
 245         SHA256ROUND(h, a, b, c, d, e, f, g, 17, w1);
 246         w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
 247         SHA256ROUND(g, h, a, b, c, d, e, f, 18, w2);
 248         w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
 249         SHA256ROUND(f, g, h, a, b, c, d, e, 19, w3);
 250         w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
 251         SHA256ROUND(e, f, g, h, a, b, c, d, 20, w4);
 252         w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
 253         SHA256ROUND(d, e, f, g, h, a, b, c, 21, w5);
 254         w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
 255         SHA256ROUND(c, d, e, f, g, h, a, b, 22, w6);
 256         w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
 257         SHA256ROUND(b, c, d, e, f, g, h, a, 23, w7);
 258         w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
 259         SHA256ROUND(a, b, c, d, e, f, g, h, 24, w8);
 260         w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
 261         SHA256ROUND(h, a, b, c, d, e, f, g, 25, w9);
 262         w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
 263         SHA256ROUND(g, h, a, b, c, d, e, f, 26, w10);
 264         w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
 265         SHA256ROUND(f, g, h, a, b, c, d, e, 27, w11);
 266         w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
 267         SHA256ROUND(e, f, g, h, a, b, c, d, 28, w12);
 268         w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
 269         SHA256ROUND(d, e, f, g, h, a, b, c, 29, w13);
 270         w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
 271         SHA256ROUND(c, d, e, f, g, h, a, b, 30, w14);
 272         w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
 273         SHA256ROUND(b, c, d, e, f, g, h, a, 31, w15);
 274 
 275         w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
 276         SHA256ROUND(a, b, c, d, e, f, g, h, 32, w0);
 277         w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
 278         SHA256ROUND(h, a, b, c, d, e, f, g, 33, w1);
 279         w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
 280         SHA256ROUND(g, h, a, b, c, d, e, f, 34, w2);
 281         w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
 282         SHA256ROUND(f, g, h, a, b, c, d, e, 35, w3);
 283         w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
 284         SHA256ROUND(e, f, g, h, a, b, c, d, 36, w4);
 285         w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
 286         SHA256ROUND(d, e, f, g, h, a, b, c, 37, w5);
 287         w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
 288         SHA256ROUND(c, d, e, f, g, h, a, b, 38, w6);
 289         w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
 290         SHA256ROUND(b, c, d, e, f, g, h, a, 39, w7);
 291         w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
 292         SHA256ROUND(a, b, c, d, e, f, g, h, 40, w8);
 293         w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
 294         SHA256ROUND(h, a, b, c, d, e, f, g, 41, w9);
 295         w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
 296         SHA256ROUND(g, h, a, b, c, d, e, f, 42, w10);
 297         w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
 298         SHA256ROUND(f, g, h, a, b, c, d, e, 43, w11);
 299         w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
 300         SHA256ROUND(e, f, g, h, a, b, c, d, 44, w12);
 301         w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
 302         SHA256ROUND(d, e, f, g, h, a, b, c, 45, w13);
 303         w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
 304         SHA256ROUND(c, d, e, f, g, h, a, b, 46, w14);
 305         w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
 306         SHA256ROUND(b, c, d, e, f, g, h, a, 47, w15);
 307 
 308         w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
 309         SHA256ROUND(a, b, c, d, e, f, g, h, 48, w0);
 310         w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
 311         SHA256ROUND(h, a, b, c, d, e, f, g, 49, w1);
 312         w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
 313         SHA256ROUND(g, h, a, b, c, d, e, f, 50, w2);
 314         w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
 315         SHA256ROUND(f, g, h, a, b, c, d, e, 51, w3);
 316         w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
 317         SHA256ROUND(e, f, g, h, a, b, c, d, 52, w4);
 318         w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
 319         SHA256ROUND(d, e, f, g, h, a, b, c, 53, w5);
 320         w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
 321         SHA256ROUND(c, d, e, f, g, h, a, b, 54, w6);
 322         w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
 323         SHA256ROUND(b, c, d, e, f, g, h, a, 55, w7);
 324         w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
 325         SHA256ROUND(a, b, c, d, e, f, g, h, 56, w8);
 326         w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
 327         SHA256ROUND(h, a, b, c, d, e, f, g, 57, w9);
 328         w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
 329         SHA256ROUND(g, h, a, b, c, d, e, f, 58, w10);
 330         w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
 331         SHA256ROUND(f, g, h, a, b, c, d, e, 59, w11);
 332         w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
 333         SHA256ROUND(e, f, g, h, a, b, c, d, 60, w12);
 334         w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
 335         SHA256ROUND(d, e, f, g, h, a, b, c, 61, w13);
 336         w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
 337         SHA256ROUND(c, d, e, f, g, h, a, b, 62, w14);
 338         w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
 339         SHA256ROUND(b, c, d, e, f, g, h, a, 63, w15);
 340 
 341         ctx->state.s32[0] += a;
 342         ctx->state.s32[1] += b;
 343         ctx->state.s32[2] += c;
 344         ctx->state.s32[3] += d;
 345         ctx->state.s32[4] += e;
 346         ctx->state.s32[5] += f;
 347         ctx->state.s32[6] += g;
 348         ctx->state.s32[7] += h;
 349 }
 350 
 351 
 352 /* SHA384 and SHA512 Transform */
 353 
 354 static void
 355 SHA512Transform(SHA2_CTX *ctx, const uint8_t *blk)
 356 {
 357 
 358         uint64_t a = ctx->state.s64[0];
 359         uint64_t b = ctx->state.s64[1];
 360         uint64_t c = ctx->state.s64[2];
 361         uint64_t d = ctx->state.s64[3];
 362         uint64_t e = ctx->state.s64[4];
 363         uint64_t f = ctx->state.s64[5];
 364         uint64_t g = ctx->state.s64[6];
 365         uint64_t h = ctx->state.s64[7];
 366 
 367         uint64_t w0, w1, w2, w3, w4, w5, w6, w7;
 368         uint64_t w8, w9, w10, w11, w12, w13, w14, w15;
 369         uint64_t T1, T2;
 370 
 371 #if     defined(__sparc)
 372         static const uint64_t sha512_consts[] = {
 373                 SHA512_CONST_0, SHA512_CONST_1, SHA512_CONST_2,
 374                 SHA512_CONST_3, SHA512_CONST_4, SHA512_CONST_5,
 375                 SHA512_CONST_6, SHA512_CONST_7, SHA512_CONST_8,
 376                 SHA512_CONST_9, SHA512_CONST_10, SHA512_CONST_11,
 377                 SHA512_CONST_12, SHA512_CONST_13, SHA512_CONST_14,
 378                 SHA512_CONST_15, SHA512_CONST_16, SHA512_CONST_17,
 379                 SHA512_CONST_18, SHA512_CONST_19, SHA512_CONST_20,
 380                 SHA512_CONST_21, SHA512_CONST_22, SHA512_CONST_23,
 381                 SHA512_CONST_24, SHA512_CONST_25, SHA512_CONST_26,
 382                 SHA512_CONST_27, SHA512_CONST_28, SHA512_CONST_29,
 383                 SHA512_CONST_30, SHA512_CONST_31, SHA512_CONST_32,
 384                 SHA512_CONST_33, SHA512_CONST_34, SHA512_CONST_35,
 385                 SHA512_CONST_36, SHA512_CONST_37, SHA512_CONST_38,
 386                 SHA512_CONST_39, SHA512_CONST_40, SHA512_CONST_41,
 387                 SHA512_CONST_42, SHA512_CONST_43, SHA512_CONST_44,
 388                 SHA512_CONST_45, SHA512_CONST_46, SHA512_CONST_47,
 389                 SHA512_CONST_48, SHA512_CONST_49, SHA512_CONST_50,
 390                 SHA512_CONST_51, SHA512_CONST_52, SHA512_CONST_53,
 391                 SHA512_CONST_54, SHA512_CONST_55, SHA512_CONST_56,
 392                 SHA512_CONST_57, SHA512_CONST_58, SHA512_CONST_59,
 393                 SHA512_CONST_60, SHA512_CONST_61, SHA512_CONST_62,
 394                 SHA512_CONST_63, SHA512_CONST_64, SHA512_CONST_65,
 395                 SHA512_CONST_66, SHA512_CONST_67, SHA512_CONST_68,
 396                 SHA512_CONST_69, SHA512_CONST_70, SHA512_CONST_71,
 397                 SHA512_CONST_72, SHA512_CONST_73, SHA512_CONST_74,
 398                 SHA512_CONST_75, SHA512_CONST_76, SHA512_CONST_77,
 399                 SHA512_CONST_78, SHA512_CONST_79
 400         };
 401 #endif
 402 
 403 
 404         if ((uintptr_t)blk & 0x7) {         /* not 8-byte aligned? */
 405                 bcopy(blk, ctx->buf_un.buf64,  sizeof (ctx->buf_un.buf64));
 406                 blk = (uint8_t *)ctx->buf_un.buf64;
 407         }
 408 
 409         /* LINTED E_BAD_PTR_CAST_ALIGN */
 410         w0 =  LOAD_BIG_64(blk + 8 * 0);
 411         SHA512ROUND(a, b, c, d, e, f, g, h, 0, w0);
 412         /* LINTED E_BAD_PTR_CAST_ALIGN */
 413         w1 =  LOAD_BIG_64(blk + 8 * 1);
 414         SHA512ROUND(h, a, b, c, d, e, f, g, 1, w1);
 415         /* LINTED E_BAD_PTR_CAST_ALIGN */
 416         w2 =  LOAD_BIG_64(blk + 8 * 2);
 417         SHA512ROUND(g, h, a, b, c, d, e, f, 2, w2);
 418         /* LINTED E_BAD_PTR_CAST_ALIGN */
 419         w3 =  LOAD_BIG_64(blk + 8 * 3);
 420         SHA512ROUND(f, g, h, a, b, c, d, e, 3, w3);
 421         /* LINTED E_BAD_PTR_CAST_ALIGN */
 422         w4 =  LOAD_BIG_64(blk + 8 * 4);
 423         SHA512ROUND(e, f, g, h, a, b, c, d, 4, w4);
 424         /* LINTED E_BAD_PTR_CAST_ALIGN */
 425         w5 =  LOAD_BIG_64(blk + 8 * 5);
 426         SHA512ROUND(d, e, f, g, h, a, b, c, 5, w5);
 427         /* LINTED E_BAD_PTR_CAST_ALIGN */
 428         w6 =  LOAD_BIG_64(blk + 8 * 6);
 429         SHA512ROUND(c, d, e, f, g, h, a, b, 6, w6);
 430         /* LINTED E_BAD_PTR_CAST_ALIGN */
 431         w7 =  LOAD_BIG_64(blk + 8 * 7);
 432         SHA512ROUND(b, c, d, e, f, g, h, a, 7, w7);
 433         /* LINTED E_BAD_PTR_CAST_ALIGN */
 434         w8 =  LOAD_BIG_64(blk + 8 * 8);
 435         SHA512ROUND(a, b, c, d, e, f, g, h, 8, w8);
 436         /* LINTED E_BAD_PTR_CAST_ALIGN */
 437         w9 =  LOAD_BIG_64(blk + 8 * 9);
 438         SHA512ROUND(h, a, b, c, d, e, f, g, 9, w9);
 439         /* LINTED E_BAD_PTR_CAST_ALIGN */
 440         w10 =  LOAD_BIG_64(blk + 8 * 10);
 441         SHA512ROUND(g, h, a, b, c, d, e, f, 10, w10);
 442         /* LINTED E_BAD_PTR_CAST_ALIGN */
 443         w11 =  LOAD_BIG_64(blk + 8 * 11);
 444         SHA512ROUND(f, g, h, a, b, c, d, e, 11, w11);
 445         /* LINTED E_BAD_PTR_CAST_ALIGN */
 446         w12 =  LOAD_BIG_64(blk + 8 * 12);
 447         SHA512ROUND(e, f, g, h, a, b, c, d, 12, w12);
 448         /* LINTED E_BAD_PTR_CAST_ALIGN */
 449         w13 =  LOAD_BIG_64(blk + 8 * 13);
 450         SHA512ROUND(d, e, f, g, h, a, b, c, 13, w13);
 451         /* LINTED E_BAD_PTR_CAST_ALIGN */
 452         w14 =  LOAD_BIG_64(blk + 8 * 14);
 453         SHA512ROUND(c, d, e, f, g, h, a, b, 14, w14);
 454         /* LINTED E_BAD_PTR_CAST_ALIGN */
 455         w15 =  LOAD_BIG_64(blk + 8 * 15);
 456         SHA512ROUND(b, c, d, e, f, g, h, a, 15, w15);
 457 
 458         w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
 459         SHA512ROUND(a, b, c, d, e, f, g, h, 16, w0);
 460         w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
 461         SHA512ROUND(h, a, b, c, d, e, f, g, 17, w1);
 462         w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
 463         SHA512ROUND(g, h, a, b, c, d, e, f, 18, w2);
 464         w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
 465         SHA512ROUND(f, g, h, a, b, c, d, e, 19, w3);
 466         w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
 467         SHA512ROUND(e, f, g, h, a, b, c, d, 20, w4);
 468         w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
 469         SHA512ROUND(d, e, f, g, h, a, b, c, 21, w5);
 470         w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
 471         SHA512ROUND(c, d, e, f, g, h, a, b, 22, w6);
 472         w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
 473         SHA512ROUND(b, c, d, e, f, g, h, a, 23, w7);
 474         w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
 475         SHA512ROUND(a, b, c, d, e, f, g, h, 24, w8);
 476         w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
 477         SHA512ROUND(h, a, b, c, d, e, f, g, 25, w9);
 478         w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
 479         SHA512ROUND(g, h, a, b, c, d, e, f, 26, w10);
 480         w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
 481         SHA512ROUND(f, g, h, a, b, c, d, e, 27, w11);
 482         w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
 483         SHA512ROUND(e, f, g, h, a, b, c, d, 28, w12);
 484         w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
 485         SHA512ROUND(d, e, f, g, h, a, b, c, 29, w13);
 486         w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
 487         SHA512ROUND(c, d, e, f, g, h, a, b, 30, w14);
 488         w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
 489         SHA512ROUND(b, c, d, e, f, g, h, a, 31, w15);
 490 
 491         w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
 492         SHA512ROUND(a, b, c, d, e, f, g, h, 32, w0);
 493         w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
 494         SHA512ROUND(h, a, b, c, d, e, f, g, 33, w1);
 495         w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
 496         SHA512ROUND(g, h, a, b, c, d, e, f, 34, w2);
 497         w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
 498         SHA512ROUND(f, g, h, a, b, c, d, e, 35, w3);
 499         w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
 500         SHA512ROUND(e, f, g, h, a, b, c, d, 36, w4);
 501         w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
 502         SHA512ROUND(d, e, f, g, h, a, b, c, 37, w5);
 503         w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
 504         SHA512ROUND(c, d, e, f, g, h, a, b, 38, w6);
 505         w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
 506         SHA512ROUND(b, c, d, e, f, g, h, a, 39, w7);
 507         w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
 508         SHA512ROUND(a, b, c, d, e, f, g, h, 40, w8);
 509         w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
 510         SHA512ROUND(h, a, b, c, d, e, f, g, 41, w9);
 511         w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
 512         SHA512ROUND(g, h, a, b, c, d, e, f, 42, w10);
 513         w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
 514         SHA512ROUND(f, g, h, a, b, c, d, e, 43, w11);
 515         w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
 516         SHA512ROUND(e, f, g, h, a, b, c, d, 44, w12);
 517         w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
 518         SHA512ROUND(d, e, f, g, h, a, b, c, 45, w13);
 519         w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
 520         SHA512ROUND(c, d, e, f, g, h, a, b, 46, w14);
 521         w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
 522         SHA512ROUND(b, c, d, e, f, g, h, a, 47, w15);
 523 
 524         w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
 525         SHA512ROUND(a, b, c, d, e, f, g, h, 48, w0);
 526         w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
 527         SHA512ROUND(h, a, b, c, d, e, f, g, 49, w1);
 528         w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
 529         SHA512ROUND(g, h, a, b, c, d, e, f, 50, w2);
 530         w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
 531         SHA512ROUND(f, g, h, a, b, c, d, e, 51, w3);
 532         w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
 533         SHA512ROUND(e, f, g, h, a, b, c, d, 52, w4);
 534         w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
 535         SHA512ROUND(d, e, f, g, h, a, b, c, 53, w5);
 536         w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
 537         SHA512ROUND(c, d, e, f, g, h, a, b, 54, w6);
 538         w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
 539         SHA512ROUND(b, c, d, e, f, g, h, a, 55, w7);
 540         w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
 541         SHA512ROUND(a, b, c, d, e, f, g, h, 56, w8);
 542         w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
 543         SHA512ROUND(h, a, b, c, d, e, f, g, 57, w9);
 544         w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
 545         SHA512ROUND(g, h, a, b, c, d, e, f, 58, w10);
 546         w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
 547         SHA512ROUND(f, g, h, a, b, c, d, e, 59, w11);
 548         w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
 549         SHA512ROUND(e, f, g, h, a, b, c, d, 60, w12);
 550         w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
 551         SHA512ROUND(d, e, f, g, h, a, b, c, 61, w13);
 552         w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
 553         SHA512ROUND(c, d, e, f, g, h, a, b, 62, w14);
 554         w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
 555         SHA512ROUND(b, c, d, e, f, g, h, a, 63, w15);
 556 
 557         w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
 558         SHA512ROUND(a, b, c, d, e, f, g, h, 64, w0);
 559         w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
 560         SHA512ROUND(h, a, b, c, d, e, f, g, 65, w1);
 561         w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
 562         SHA512ROUND(g, h, a, b, c, d, e, f, 66, w2);
 563         w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
 564         SHA512ROUND(f, g, h, a, b, c, d, e, 67, w3);
 565         w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
 566         SHA512ROUND(e, f, g, h, a, b, c, d, 68, w4);
 567         w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
 568         SHA512ROUND(d, e, f, g, h, a, b, c, 69, w5);
 569         w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
 570         SHA512ROUND(c, d, e, f, g, h, a, b, 70, w6);
 571         w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
 572         SHA512ROUND(b, c, d, e, f, g, h, a, 71, w7);
 573         w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
 574         SHA512ROUND(a, b, c, d, e, f, g, h, 72, w8);
 575         w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
 576         SHA512ROUND(h, a, b, c, d, e, f, g, 73, w9);
 577         w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
 578         SHA512ROUND(g, h, a, b, c, d, e, f, 74, w10);
 579         w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
 580         SHA512ROUND(f, g, h, a, b, c, d, e, 75, w11);
 581         w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
 582         SHA512ROUND(e, f, g, h, a, b, c, d, 76, w12);
 583         w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
 584         SHA512ROUND(d, e, f, g, h, a, b, c, 77, w13);
 585         w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
 586         SHA512ROUND(c, d, e, f, g, h, a, b, 78, w14);
 587         w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
 588         SHA512ROUND(b, c, d, e, f, g, h, a, 79, w15);
 589 
 590         ctx->state.s64[0] += a;
 591         ctx->state.s64[1] += b;
 592         ctx->state.s64[2] += c;
 593         ctx->state.s64[3] += d;
 594         ctx->state.s64[4] += e;
 595         ctx->state.s64[5] += f;
 596         ctx->state.s64[6] += g;
 597         ctx->state.s64[7] += h;
 598 
 599 }
 600 
 601 
 602 /*
 603  * Encode()
 604  *
 605  * purpose: to convert a list of numbers from little endian to big endian
 606  *   input: uint8_t *   : place to store the converted big endian numbers
 607  *          uint32_t *  : place to get numbers to convert from
 608  *          size_t      : the length of the input in bytes
 609  *  output: void
 610  */
 611 
 612 static void
 613 Encode(uint8_t *_RESTRICT_KYWD output, uint32_t *_RESTRICT_KYWD input,
 614     size_t len)
 615 {
 616         size_t          i, j;
 617 
 618 #if     defined(__sparc)
 619         if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
 620                 for (i = 0, j = 0; j < len; i++, j += 4) {
 621                         /* LINTED: pointer alignment */
 622                         *((uint32_t *)(output + j)) = input[i];
 623                 }
 624         } else {
 625 #endif  /* little endian -- will work on big endian, but slowly */
 626                 for (i = 0, j = 0; j < len; i++, j += 4) {
 627                         output[j]       = (input[i] >> 24) & 0xff;
 628                         output[j + 1]   = (input[i] >> 16) & 0xff;
 629                         output[j + 2]   = (input[i] >>  8) & 0xff;
 630                         output[j + 3]   = input[i] & 0xff;
 631                 }
 632 #if     defined(__sparc)
 633         }
 634 #endif
 635 }
 636 
 637 static void
 638 Encode64(uint8_t *_RESTRICT_KYWD output, uint64_t *_RESTRICT_KYWD input,
 639     size_t len)
 640 {
 641         size_t          i, j;
 642 
 643 #if     defined(__sparc)
 644         if (IS_P2ALIGNED(output, sizeof (uint64_t))) {
 645                 for (i = 0, j = 0; j < len; i++, j += 8) {
 646                         /* LINTED: pointer alignment */
 647                         *((uint64_t *)(output + j)) = input[i];
 648                 }
 649         } else {
 650 #endif  /* little endian -- will work on big endian, but slowly */
 651                 for (i = 0, j = 0; j < len; i++, j += 8) {
 652 
 653                         output[j]       = (input[i] >> 56) & 0xff;
 654                         output[j + 1]   = (input[i] >> 48) & 0xff;
 655                         output[j + 2]   = (input[i] >> 40) & 0xff;
 656                         output[j + 3]   = (input[i] >> 32) & 0xff;
 657                         output[j + 4]   = (input[i] >> 24) & 0xff;
 658                         output[j + 5]   = (input[i] >> 16) & 0xff;
 659                         output[j + 6]   = (input[i] >>  8) & 0xff;
 660                         output[j + 7]   = input[i] & 0xff;
 661                 }
 662 #if     defined(__sparc)
 663         }
 664 #endif
 665 }
 666 
 667 
 668 void
 669 SHA2Init(uint64_t mech, SHA2_CTX *ctx)
 670 {
 671 
 672         switch (mech) {
 673         case SHA256_MECH_INFO_TYPE:
 674         case SHA256_HMAC_MECH_INFO_TYPE:
 675         case SHA256_HMAC_GEN_MECH_INFO_TYPE:
 676                 ctx->state.s32[0] = 0x6a09e667U;
 677                 ctx->state.s32[1] = 0xbb67ae85U;
 678                 ctx->state.s32[2] = 0x3c6ef372U;
 679                 ctx->state.s32[3] = 0xa54ff53aU;
 680                 ctx->state.s32[4] = 0x510e527fU;
 681                 ctx->state.s32[5] = 0x9b05688cU;
 682                 ctx->state.s32[6] = 0x1f83d9abU;
 683                 ctx->state.s32[7] = 0x5be0cd19U;
 684                 break;
 685         case SHA384_MECH_INFO_TYPE:
 686         case SHA384_HMAC_MECH_INFO_TYPE:
 687         case SHA384_HMAC_GEN_MECH_INFO_TYPE:
 688                 ctx->state.s64[0] = 0xcbbb9d5dc1059ed8ULL;
 689                 ctx->state.s64[1] = 0x629a292a367cd507ULL;
 690                 ctx->state.s64[2] = 0x9159015a3070dd17ULL;
 691                 ctx->state.s64[3] = 0x152fecd8f70e5939ULL;
 692                 ctx->state.s64[4] = 0x67332667ffc00b31ULL;
 693                 ctx->state.s64[5] = 0x8eb44a8768581511ULL;
 694                 ctx->state.s64[6] = 0xdb0c2e0d64f98fa7ULL;
 695                 ctx->state.s64[7] = 0x47b5481dbefa4fa4ULL;
 696                 break;
 697         case SHA512_MECH_INFO_TYPE:
 698         case SHA512_HMAC_MECH_INFO_TYPE:
 699         case SHA512_HMAC_GEN_MECH_INFO_TYPE:
 700                 ctx->state.s64[0] = 0x6a09e667f3bcc908ULL;
 701                 ctx->state.s64[1] = 0xbb67ae8584caa73bULL;
 702                 ctx->state.s64[2] = 0x3c6ef372fe94f82bULL;
 703                 ctx->state.s64[3] = 0xa54ff53a5f1d36f1ULL;
 704                 ctx->state.s64[4] = 0x510e527fade682d1ULL;
 705                 ctx->state.s64[5] = 0x9b05688c2b3e6c1fULL;
 706                 ctx->state.s64[6] = 0x1f83d9abfb41bd6bULL;
 707                 ctx->state.s64[7] = 0x5be0cd19137e2179ULL;
 708                 break;
 709 #ifdef _KERNEL
 710         default:
 711                 cmn_err(CE_PANIC, "sha2_init: "
 712                     "failed to find a supported algorithm: 0x%x",
 713                     (uint32_t)mech);
 714 
 715 #endif /* _KERNEL */
 716         }
 717 
 718         ctx->algotype = mech;
 719         ctx->count.c64[0] = ctx->count.c64[1] = 0;
 720 }
 721 
 722 #ifndef _KERNEL
 723 
 724 #pragma inline(SHA256Init, SHA384Init, SHA512Init)
 725 void
 726 SHA256Init(SHA256_CTX *ctx)
 727 {
 728         SHA2Init(SHA256, ctx);
 729 }
 730 
 731 void
 732 SHA384Init(SHA384_CTX *ctx)
 733 {
 734         SHA2Init(SHA384, ctx);
 735 }
 736 
 737 void
 738 SHA512Init(SHA512_CTX *ctx)
 739 {
 740         SHA2Init(SHA512, ctx);
 741 }
 742 
 743 #endif /* _KERNEL */
 744 
 745 /*
 746  * SHA2Update()
 747  *
 748  * purpose: continues an sha2 digest operation, using the message block
 749  *          to update the context.
 750  *   input: SHA2_CTX *  : the context to update
 751  *          void *      : the message block
 752  *          size_t    : the length of the message block in bytes
 753  *  output: void
 754  */
 755 
 756 void
 757 SHA2Update(SHA2_CTX *ctx, const void *inptr, size_t input_len)
 758 {
 759         uint32_t i, buf_index, buf_len, buf_limit;
 760         const uint8_t *input = inptr;
 761 
 762         /* check for noop */
 763         if (input_len == 0)
 764                 return;
 765 
 766         if (ctx->algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
 767                 buf_limit = 64;
 768 
 769                 /* compute number of bytes mod 64 */
 770                 buf_index = (ctx->count.c32[1] >> 3) & 0x3F;
 771 
 772                 /* update number of bits */
 773                 if ((ctx->count.c32[1] += (input_len << 3)) < (input_len << 3))
 774                         ctx->count.c32[0]++;
 775 
 776                 ctx->count.c32[0] += (input_len >> 29);
 777 
 778         } else {
 779                 buf_limit = 128;
 780 
 781                 /* compute number of bytes mod 128 */
 782                 buf_index = (ctx->count.c64[1] >> 3) & 0x7F;
 783 
 784                 /* update number of bits */
 785                 if ((ctx->count.c64[1] += (input_len << 3)) < (input_len << 3))
 786                         ctx->count.c64[0]++;
 787 
 788                 ctx->count.c64[0] += (input_len >> 29);
 789         }
 790 
 791         buf_len = buf_limit - buf_index;
 792 
 793         /* transform as many times as possible */
 794         i = 0;
 795         if (input_len >= buf_len) {
 796 
 797                 /*
 798                  * general optimization:
 799                  *
 800                  * only do initial bcopy() and SHA2Transform() if
 801                  * buf_index != 0.  if buf_index == 0, we're just
 802                  * wasting our time doing the bcopy() since there
 803                  * wasn't any data left over from a previous call to
 804                  * SHA2Update().
 805                  */
 806                 if (buf_index) {
 807                         bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
 808                         if (ctx->algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE)
 809                                 SHA256Transform(ctx, ctx->buf_un.buf8);
 810                         else
 811                                 SHA512Transform(ctx, ctx->buf_un.buf8);
 812 
 813                         i = buf_len;
 814                 }
 815 
 816 
 817                 for (; i + buf_limit - 1 < input_len; i += buf_limit) {
 818                         if (ctx->algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE)
 819                                 SHA256Transform(ctx, &input[i]);
 820                         else
 821                                 SHA512Transform(ctx, &input[i]);
 822                 }
 823 
 824                 /*
 825                  * general optimization:
 826                  *
 827                  * if i and input_len are the same, return now instead
 828                  * of calling bcopy(), since the bcopy() in this case
 829                  * will be an expensive nop.
 830                  */
 831 
 832                 if (input_len == i)
 833                         return;
 834 
 835                 buf_index = 0;
 836         }
 837 
 838         /* buffer remaining input */
 839         bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
 840 }
 841 
 842 
 843 /*
 844  * SHA2Final()
 845  *
 846  * purpose: ends an sha2 digest operation, finalizing the message digest and
 847  *          zeroing the context.
 848  *   input: uchar_t *   : a buffer to store the digest in
 849  *                      : The function actually uses void* because many
 850  *                      : callers pass things other than uchar_t here.
 851  *          SHA2_CTX *  : the context to finalize, save, and zero
 852  *  output: void
 853  */
 854 
 855 void
 856 SHA2Final(void *digest, SHA2_CTX *ctx)
 857 {
 858         uint8_t         bitcount_be[sizeof (ctx->count.c32)];
 859         uint8_t         bitcount_be64[sizeof (ctx->count.c64)];
 860         uint32_t        index;
 861 
 862 
 863         if (ctx->algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
 864                 index  = (ctx->count.c32[1] >> 3) & 0x3f;
 865                 Encode(bitcount_be, ctx->count.c32, sizeof (bitcount_be));
 866                 SHA2Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
 867                 SHA2Update(ctx, bitcount_be, sizeof (bitcount_be));
 868                 Encode(digest, ctx->state.s32, sizeof (ctx->state.s32));
 869 
 870         } else {
 871                 index  = (ctx->count.c64[1] >> 3) & 0x7f;
 872                 Encode64(bitcount_be64, ctx->count.c64,
 873                     sizeof (bitcount_be64));
 874                 SHA2Update(ctx, PADDING, ((index < 112) ? 112 : 240) - index);
 875                 SHA2Update(ctx, bitcount_be64, sizeof (bitcount_be64));
 876                 if (ctx->algotype <= SHA384_HMAC_GEN_MECH_INFO_TYPE) {
 877                         ctx->state.s64[6] = ctx->state.s64[7] = 0;
 878                         Encode64(digest, ctx->state.s64,
 879                             sizeof (uint64_t) * 6);
 880                 } else
 881                         Encode64(digest, ctx->state.s64,
 882                             sizeof (ctx->state.s64));
 883         }
 884 
 885         /* zeroize sensitive information */
 886         bzero(ctx, sizeof (*ctx));
 887 }