1 /*
   2  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
   3  * Use is subject to license terms.
   4  */
   5 
   6 #pragma ident   "@(#)sha2.c     1.8     08/03/20 SMI"
   7 
   8 /*
   9  * The basic framework for this code came from the reference
  10  * implementation for MD5.  That implementation is Copyright (C)
  11  * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
  12  *
  13  * License to copy and use this software is granted provided that it
  14  * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
  15  * Algorithm" in all material mentioning or referencing this software
  16  * or this function.
  17  *
  18  * License is also granted to make and use derivative works provided
  19  * that such works are identified as "derived from the RSA Data
  20  * Security, Inc. MD5 Message-Digest Algorithm" in all material
  21  * mentioning or referencing the derived work.
  22  *
  23  * RSA Data Security, Inc. makes no representations concerning either
  24  * the merchantability of this software or the suitability of this
  25  * software for any particular purpose. It is provided "as is"
  26  * without express or implied warranty of any kind.
  27  *
  28  * These notices must be retained in any copies of any part of this
  29  * documentation and/or software.
  30  *
  31  * NOTE: Cleaned-up and optimized, version of SHA2, based on the FIPS 180-2
  32  * standard, available at http://www.itl.nist.gov/div897/pubs/fip180-2.htm
  33  * Not as fast as one would like -- further optimizations are encouraged
  34  * and appreciated.
  35  */
  36 
  37 #include <sys/types.h>
  38 #include <sys/param.h>
  39 #include <sys/systm.h>
  40 #include <sys/sysmacros.h>
  41 #define _SHA2_IMPL
  42 #include <sys/sha2.h>
  43 #include <sys/sha2_consts.h>
  44 
  45 #ifdef _KERNEL
  46 #include <sys/cmn_err.h>
  47 
  48 #else
  49 #include <strings.h>
  50 #include <stdlib.h>
  51 #include <errno.h>
  52 
  53 #pragma weak SHA256Update = SHA2Update
  54 #pragma weak SHA384Update = SHA2Update
  55 #pragma weak SHA512Update = SHA2Update
  56 
  57 #pragma weak SHA256Final = SHA2Final
  58 #pragma weak SHA384Final = SHA2Final
  59 #pragma weak SHA512Final = SHA2Final
  60 
  61 #endif  /* _KERNEL */
  62 
  63 static void Encode(uint8_t *, uint32_t *, size_t);
  64 static void Encode64(uint8_t *, uint64_t *, size_t);
  65 
  66 #if     defined(__amd64)
  67 #define SHA512Transform(ctx, in) SHA512TransformBlocks((ctx), (in), 1)
  68 #define SHA256Transform(ctx, in) SHA256TransformBlocks((ctx), (in), 1)
  69 
  70 void SHA512TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
  71 void SHA256TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
  72 
  73 #else
  74 static void SHA256Transform(SHA2_CTX *, const uint8_t *);
  75 static void SHA512Transform(SHA2_CTX *, const uint8_t *);
  76 #endif  /* __amd64 */
  77 
  78 static uint8_t PADDING[128] = { 0x80, /* all zeros */ };
  79 
  80 /* Ch and Maj are the basic SHA2 functions. */
  81 #define Ch(b, c, d)     (((b) & (c)) ^ ((~b) & (d)))
  82 #define Maj(b, c, d)    (((b) & (c)) ^ ((b) & (d)) ^ ((c) & (d)))
  83 
  84 /* Rotates x right n bits. */
  85 #define ROTR(x, n)      \
  86         (((x) >> (n)) | ((x) << ((sizeof (x) * NBBY)-(n))))
  87 
  88 /* Shift x right n bits */
  89 #define SHR(x, n)       ((x) >> (n))
  90 
  91 /* SHA256 Functions */
  92 #define BIGSIGMA0_256(x)        (ROTR((x), 2) ^ ROTR((x), 13) ^ ROTR((x), 22))
  93 #define BIGSIGMA1_256(x)        (ROTR((x), 6) ^ ROTR((x), 11) ^ ROTR((x), 25))
  94 #define SIGMA0_256(x)           (ROTR((x), 7) ^ ROTR((x), 18) ^ SHR((x), 3))
  95 #define SIGMA1_256(x)           (ROTR((x), 17) ^ ROTR((x), 19) ^ SHR((x), 10))
  96 
  97 #define SHA256ROUND(a, b, c, d, e, f, g, h, i, w)                       \
  98         T1 = h + BIGSIGMA1_256(e) + Ch(e, f, g) + SHA256_CONST(i) + w;  \
  99         d += T1;                                                        \
 100         T2 = BIGSIGMA0_256(a) + Maj(a, b, c);                           \
 101         h = T1 + T2
 102 
 103 /* SHA384/512 Functions */
 104 #define BIGSIGMA0(x)    (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
 105 #define BIGSIGMA1(x)    (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
 106 #define SIGMA0(x)       (ROTR((x), 1) ^ ROTR((x), 8) ^ SHR((x), 7))
 107 #define SIGMA1(x)       (ROTR((x), 19) ^ ROTR((x), 61) ^ SHR((x), 6))
 108 #define SHA512ROUND(a, b, c, d, e, f, g, h, i, w)                       \
 109         T1 = h + BIGSIGMA1(e) + Ch(e, f, g) + SHA512_CONST(i) + w;      \
 110         d += T1;                                                        \
 111         T2 = BIGSIGMA0(a) + Maj(a, b, c);                               \
 112         h = T1 + T2
 113 
 114 /*
 115  * sparc optimization:
 116  *
 117  * on the sparc, we can load big endian 32-bit data easily.  note that
 118  * special care must be taken to ensure the address is 32-bit aligned.
 119  * in the interest of speed, we don't check to make sure, since
 120  * careful programming can guarantee this for us.
 121  */
 122 
 123 #if     defined(_BIG_ENDIAN)
 124 
 125 #define LOAD_BIG_32(addr)       (*(uint32_t *)(addr))
 126 
 127 #else   /* little endian -- will work on big endian, but slowly */
 128 
 129 #define LOAD_BIG_32(addr)       \
 130         (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
 131 #endif
 132 
 133 
 134 #if     defined(_BIG_ENDIAN)
 135 
 136 #define LOAD_BIG_64(addr)       (*(uint64_t *)(addr))
 137 
 138 #else   /* little endian -- will work on big endian, but slowly */
 139 
 140 #define LOAD_BIG_64(addr)       \
 141         (((uint64_t)(addr)[0] << 56) | ((uint64_t)(addr)[1] << 48) |        \
 142             ((uint64_t)(addr)[2] << 40) | ((uint64_t)(addr)[3] << 32) |     \
 143             ((uint64_t)(addr)[4] << 24) | ((uint64_t)(addr)[5] << 16) |     \
 144             ((uint64_t)(addr)[6] << 8) | (uint64_t)(addr)[7])
 145 #endif
 146 
 147 
 148 #if     !defined(__amd64)
 149 /* SHA256 Transform */
 150 
 151 static void
 152 SHA256Transform(SHA2_CTX *ctx, const uint8_t *blk)
 153 {
 154         uint32_t a = ctx->state.s32[0];
 155         uint32_t b = ctx->state.s32[1];
 156         uint32_t c = ctx->state.s32[2];
 157         uint32_t d = ctx->state.s32[3];
 158         uint32_t e = ctx->state.s32[4];
 159         uint32_t f = ctx->state.s32[5];
 160         uint32_t g = ctx->state.s32[6];
 161         uint32_t h = ctx->state.s32[7];
 162 
 163         uint32_t w0, w1, w2, w3, w4, w5, w6, w7;
 164         uint32_t w8, w9, w10, w11, w12, w13, w14, w15;
 165         uint32_t T1, T2;
 166 
 167 #if     defined(__sparc)
 168         static const uint32_t sha256_consts[] = {
 169                 SHA256_CONST_0, SHA256_CONST_1, SHA256_CONST_2,
 170                 SHA256_CONST_3, SHA256_CONST_4, SHA256_CONST_5,
 171                 SHA256_CONST_6, SHA256_CONST_7, SHA256_CONST_8,
 172                 SHA256_CONST_9, SHA256_CONST_10, SHA256_CONST_11,
 173                 SHA256_CONST_12, SHA256_CONST_13, SHA256_CONST_14,
 174                 SHA256_CONST_15, SHA256_CONST_16, SHA256_CONST_17,
 175                 SHA256_CONST_18, SHA256_CONST_19, SHA256_CONST_20,
 176                 SHA256_CONST_21, SHA256_CONST_22, SHA256_CONST_23,
 177                 SHA256_CONST_24, SHA256_CONST_25, SHA256_CONST_26,
 178                 SHA256_CONST_27, SHA256_CONST_28, SHA256_CONST_29,
 179                 SHA256_CONST_30, SHA256_CONST_31, SHA256_CONST_32,
 180                 SHA256_CONST_33, SHA256_CONST_34, SHA256_CONST_35,
 181                 SHA256_CONST_36, SHA256_CONST_37, SHA256_CONST_38,
 182                 SHA256_CONST_39, SHA256_CONST_40, SHA256_CONST_41,
 183                 SHA256_CONST_42, SHA256_CONST_43, SHA256_CONST_44,
 184                 SHA256_CONST_45, SHA256_CONST_46, SHA256_CONST_47,
 185                 SHA256_CONST_48, SHA256_CONST_49, SHA256_CONST_50,
 186                 SHA256_CONST_51, SHA256_CONST_52, SHA256_CONST_53,
 187                 SHA256_CONST_54, SHA256_CONST_55, SHA256_CONST_56,
 188                 SHA256_CONST_57, SHA256_CONST_58, SHA256_CONST_59,
 189                 SHA256_CONST_60, SHA256_CONST_61, SHA256_CONST_62,
 190                 SHA256_CONST_63
 191         };
 192 #endif  /* __sparc */
 193 
 194         if ((uintptr_t)blk & 0x3) {         /* not 4-byte aligned? */
 195                 bcopy(blk, ctx->buf_un.buf32,  sizeof (ctx->buf_un.buf32));
 196                 blk = (uint8_t *)ctx->buf_un.buf32;
 197         }
 198 
 199         /* LINTED E_BAD_PTR_CAST_ALIGN */
 200         w0 =  LOAD_BIG_32(blk + 4 * 0);
 201         SHA256ROUND(a, b, c, d, e, f, g, h, 0, w0);
 202         /* LINTED E_BAD_PTR_CAST_ALIGN */
 203         w1 =  LOAD_BIG_32(blk + 4 * 1);
 204         SHA256ROUND(h, a, b, c, d, e, f, g, 1, w1);
 205         /* LINTED E_BAD_PTR_CAST_ALIGN */
 206         w2 =  LOAD_BIG_32(blk + 4 * 2);
 207         SHA256ROUND(g, h, a, b, c, d, e, f, 2, w2);
 208         /* LINTED E_BAD_PTR_CAST_ALIGN */
 209         w3 =  LOAD_BIG_32(blk + 4 * 3);
 210         SHA256ROUND(f, g, h, a, b, c, d, e, 3, w3);
 211         /* LINTED E_BAD_PTR_CAST_ALIGN */
 212         w4 =  LOAD_BIG_32(blk + 4 * 4);
 213         SHA256ROUND(e, f, g, h, a, b, c, d, 4, w4);
 214         /* LINTED E_BAD_PTR_CAST_ALIGN */
 215         w5 =  LOAD_BIG_32(blk + 4 * 5);
 216         SHA256ROUND(d, e, f, g, h, a, b, c, 5, w5);
 217         /* LINTED E_BAD_PTR_CAST_ALIGN */
 218         w6 =  LOAD_BIG_32(blk + 4 * 6);
 219         SHA256ROUND(c, d, e, f, g, h, a, b, 6, w6);
 220         /* LINTED E_BAD_PTR_CAST_ALIGN */
 221         w7 =  LOAD_BIG_32(blk + 4 * 7);
 222         SHA256ROUND(b, c, d, e, f, g, h, a, 7, w7);
 223         /* LINTED E_BAD_PTR_CAST_ALIGN */
 224         w8 =  LOAD_BIG_32(blk + 4 * 8);
 225         SHA256ROUND(a, b, c, d, e, f, g, h, 8, w8);
 226         /* LINTED E_BAD_PTR_CAST_ALIGN */
 227         w9 =  LOAD_BIG_32(blk + 4 * 9);
 228         SHA256ROUND(h, a, b, c, d, e, f, g, 9, w9);
 229         /* LINTED E_BAD_PTR_CAST_ALIGN */
 230         w10 =  LOAD_BIG_32(blk + 4 * 10);
 231         SHA256ROUND(g, h, a, b, c, d, e, f, 10, w10);
 232         /* LINTED E_BAD_PTR_CAST_ALIGN */
 233         w11 =  LOAD_BIG_32(blk + 4 * 11);
 234         SHA256ROUND(f, g, h, a, b, c, d, e, 11, w11);
 235         /* LINTED E_BAD_PTR_CAST_ALIGN */
 236         w12 =  LOAD_BIG_32(blk + 4 * 12);
 237         SHA256ROUND(e, f, g, h, a, b, c, d, 12, w12);
 238         /* LINTED E_BAD_PTR_CAST_ALIGN */
 239         w13 =  LOAD_BIG_32(blk + 4 * 13);
 240         SHA256ROUND(d, e, f, g, h, a, b, c, 13, w13);
 241         /* LINTED E_BAD_PTR_CAST_ALIGN */
 242         w14 =  LOAD_BIG_32(blk + 4 * 14);
 243         SHA256ROUND(c, d, e, f, g, h, a, b, 14, w14);
 244         /* LINTED E_BAD_PTR_CAST_ALIGN */
 245         w15 =  LOAD_BIG_32(blk + 4 * 15);
 246         SHA256ROUND(b, c, d, e, f, g, h, a, 15, w15);
 247 
 248         w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
 249         SHA256ROUND(a, b, c, d, e, f, g, h, 16, w0);
 250         w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
 251         SHA256ROUND(h, a, b, c, d, e, f, g, 17, w1);
 252         w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
 253         SHA256ROUND(g, h, a, b, c, d, e, f, 18, w2);
 254         w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
 255         SHA256ROUND(f, g, h, a, b, c, d, e, 19, w3);
 256         w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
 257         SHA256ROUND(e, f, g, h, a, b, c, d, 20, w4);
 258         w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
 259         SHA256ROUND(d, e, f, g, h, a, b, c, 21, w5);
 260         w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
 261         SHA256ROUND(c, d, e, f, g, h, a, b, 22, w6);
 262         w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
 263         SHA256ROUND(b, c, d, e, f, g, h, a, 23, w7);
 264         w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
 265         SHA256ROUND(a, b, c, d, e, f, g, h, 24, w8);
 266         w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
 267         SHA256ROUND(h, a, b, c, d, e, f, g, 25, w9);
 268         w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
 269         SHA256ROUND(g, h, a, b, c, d, e, f, 26, w10);
 270         w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
 271         SHA256ROUND(f, g, h, a, b, c, d, e, 27, w11);
 272         w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
 273         SHA256ROUND(e, f, g, h, a, b, c, d, 28, w12);
 274         w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
 275         SHA256ROUND(d, e, f, g, h, a, b, c, 29, w13);
 276         w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
 277         SHA256ROUND(c, d, e, f, g, h, a, b, 30, w14);
 278         w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
 279         SHA256ROUND(b, c, d, e, f, g, h, a, 31, w15);
 280 
 281         w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
 282         SHA256ROUND(a, b, c, d, e, f, g, h, 32, w0);
 283         w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
 284         SHA256ROUND(h, a, b, c, d, e, f, g, 33, w1);
 285         w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
 286         SHA256ROUND(g, h, a, b, c, d, e, f, 34, w2);
 287         w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
 288         SHA256ROUND(f, g, h, a, b, c, d, e, 35, w3);
 289         w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
 290         SHA256ROUND(e, f, g, h, a, b, c, d, 36, w4);
 291         w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
 292         SHA256ROUND(d, e, f, g, h, a, b, c, 37, w5);
 293         w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
 294         SHA256ROUND(c, d, e, f, g, h, a, b, 38, w6);
 295         w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
 296         SHA256ROUND(b, c, d, e, f, g, h, a, 39, w7);
 297         w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
 298         SHA256ROUND(a, b, c, d, e, f, g, h, 40, w8);
 299         w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
 300         SHA256ROUND(h, a, b, c, d, e, f, g, 41, w9);
 301         w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
 302         SHA256ROUND(g, h, a, b, c, d, e, f, 42, w10);
 303         w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
 304         SHA256ROUND(f, g, h, a, b, c, d, e, 43, w11);
 305         w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
 306         SHA256ROUND(e, f, g, h, a, b, c, d, 44, w12);
 307         w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
 308         SHA256ROUND(d, e, f, g, h, a, b, c, 45, w13);
 309         w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
 310         SHA256ROUND(c, d, e, f, g, h, a, b, 46, w14);
 311         w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
 312         SHA256ROUND(b, c, d, e, f, g, h, a, 47, w15);
 313 
 314         w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
 315         SHA256ROUND(a, b, c, d, e, f, g, h, 48, w0);
 316         w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
 317         SHA256ROUND(h, a, b, c, d, e, f, g, 49, w1);
 318         w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
 319         SHA256ROUND(g, h, a, b, c, d, e, f, 50, w2);
 320         w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
 321         SHA256ROUND(f, g, h, a, b, c, d, e, 51, w3);
 322         w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
 323         SHA256ROUND(e, f, g, h, a, b, c, d, 52, w4);
 324         w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
 325         SHA256ROUND(d, e, f, g, h, a, b, c, 53, w5);
 326         w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
 327         SHA256ROUND(c, d, e, f, g, h, a, b, 54, w6);
 328         w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
 329         SHA256ROUND(b, c, d, e, f, g, h, a, 55, w7);
 330         w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
 331         SHA256ROUND(a, b, c, d, e, f, g, h, 56, w8);
 332         w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
 333         SHA256ROUND(h, a, b, c, d, e, f, g, 57, w9);
 334         w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
 335         SHA256ROUND(g, h, a, b, c, d, e, f, 58, w10);
 336         w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
 337         SHA256ROUND(f, g, h, a, b, c, d, e, 59, w11);
 338         w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
 339         SHA256ROUND(e, f, g, h, a, b, c, d, 60, w12);
 340         w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
 341         SHA256ROUND(d, e, f, g, h, a, b, c, 61, w13);
 342         w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
 343         SHA256ROUND(c, d, e, f, g, h, a, b, 62, w14);
 344         w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
 345         SHA256ROUND(b, c, d, e, f, g, h, a, 63, w15);
 346 
 347         ctx->state.s32[0] += a;
 348         ctx->state.s32[1] += b;
 349         ctx->state.s32[2] += c;
 350         ctx->state.s32[3] += d;
 351         ctx->state.s32[4] += e;
 352         ctx->state.s32[5] += f;
 353         ctx->state.s32[6] += g;
 354         ctx->state.s32[7] += h;
 355 }
 356 
 357 
 358 /* SHA384 and SHA512 Transform */
 359 
 360 static void
 361 SHA512Transform(SHA2_CTX *ctx, const uint8_t *blk)
 362 {
 363 
 364         uint64_t a = ctx->state.s64[0];
 365         uint64_t b = ctx->state.s64[1];
 366         uint64_t c = ctx->state.s64[2];
 367         uint64_t d = ctx->state.s64[3];
 368         uint64_t e = ctx->state.s64[4];
 369         uint64_t f = ctx->state.s64[5];
 370         uint64_t g = ctx->state.s64[6];
 371         uint64_t h = ctx->state.s64[7];
 372 
 373         uint64_t w0, w1, w2, w3, w4, w5, w6, w7;
 374         uint64_t w8, w9, w10, w11, w12, w13, w14, w15;
 375         uint64_t T1, T2;
 376 
 377 #if     defined(__sparc)
 378         static const uint64_t sha512_consts[] = {
 379                 SHA512_CONST_0, SHA512_CONST_1, SHA512_CONST_2,
 380                 SHA512_CONST_3, SHA512_CONST_4, SHA512_CONST_5,
 381                 SHA512_CONST_6, SHA512_CONST_7, SHA512_CONST_8,
 382                 SHA512_CONST_9, SHA512_CONST_10, SHA512_CONST_11,
 383                 SHA512_CONST_12, SHA512_CONST_13, SHA512_CONST_14,
 384                 SHA512_CONST_15, SHA512_CONST_16, SHA512_CONST_17,
 385                 SHA512_CONST_18, SHA512_CONST_19, SHA512_CONST_20,
 386                 SHA512_CONST_21, SHA512_CONST_22, SHA512_CONST_23,
 387                 SHA512_CONST_24, SHA512_CONST_25, SHA512_CONST_26,
 388                 SHA512_CONST_27, SHA512_CONST_28, SHA512_CONST_29,
 389                 SHA512_CONST_30, SHA512_CONST_31, SHA512_CONST_32,
 390                 SHA512_CONST_33, SHA512_CONST_34, SHA512_CONST_35,
 391                 SHA512_CONST_36, SHA512_CONST_37, SHA512_CONST_38,
 392                 SHA512_CONST_39, SHA512_CONST_40, SHA512_CONST_41,
 393                 SHA512_CONST_42, SHA512_CONST_43, SHA512_CONST_44,
 394                 SHA512_CONST_45, SHA512_CONST_46, SHA512_CONST_47,
 395                 SHA512_CONST_48, SHA512_CONST_49, SHA512_CONST_50,
 396                 SHA512_CONST_51, SHA512_CONST_52, SHA512_CONST_53,
 397                 SHA512_CONST_54, SHA512_CONST_55, SHA512_CONST_56,
 398                 SHA512_CONST_57, SHA512_CONST_58, SHA512_CONST_59,
 399                 SHA512_CONST_60, SHA512_CONST_61, SHA512_CONST_62,
 400                 SHA512_CONST_63, SHA512_CONST_64, SHA512_CONST_65,
 401                 SHA512_CONST_66, SHA512_CONST_67, SHA512_CONST_68,
 402                 SHA512_CONST_69, SHA512_CONST_70, SHA512_CONST_71,
 403                 SHA512_CONST_72, SHA512_CONST_73, SHA512_CONST_74,
 404                 SHA512_CONST_75, SHA512_CONST_76, SHA512_CONST_77,
 405                 SHA512_CONST_78, SHA512_CONST_79
 406         };
 407 #endif  /* __sparc */
 408 
 409 
 410         if ((uintptr_t)blk & 0x7) {         /* not 8-byte aligned? */
 411                 bcopy(blk, ctx->buf_un.buf64,  sizeof (ctx->buf_un.buf64));
 412                 blk = (uint8_t *)ctx->buf_un.buf64;
 413         }
 414 
 415         /* LINTED E_BAD_PTR_CAST_ALIGN */
 416         w0 =  LOAD_BIG_64(blk + 8 * 0);
 417         SHA512ROUND(a, b, c, d, e, f, g, h, 0, w0);
 418         /* LINTED E_BAD_PTR_CAST_ALIGN */
 419         w1 =  LOAD_BIG_64(blk + 8 * 1);
 420         SHA512ROUND(h, a, b, c, d, e, f, g, 1, w1);
 421         /* LINTED E_BAD_PTR_CAST_ALIGN */
 422         w2 =  LOAD_BIG_64(blk + 8 * 2);
 423         SHA512ROUND(g, h, a, b, c, d, e, f, 2, w2);
 424         /* LINTED E_BAD_PTR_CAST_ALIGN */
 425         w3 =  LOAD_BIG_64(blk + 8 * 3);
 426         SHA512ROUND(f, g, h, a, b, c, d, e, 3, w3);
 427         /* LINTED E_BAD_PTR_CAST_ALIGN */
 428         w4 =  LOAD_BIG_64(blk + 8 * 4);
 429         SHA512ROUND(e, f, g, h, a, b, c, d, 4, w4);
 430         /* LINTED E_BAD_PTR_CAST_ALIGN */
 431         w5 =  LOAD_BIG_64(blk + 8 * 5);
 432         SHA512ROUND(d, e, f, g, h, a, b, c, 5, w5);
 433         /* LINTED E_BAD_PTR_CAST_ALIGN */
 434         w6 =  LOAD_BIG_64(blk + 8 * 6);
 435         SHA512ROUND(c, d, e, f, g, h, a, b, 6, w6);
 436         /* LINTED E_BAD_PTR_CAST_ALIGN */
 437         w7 =  LOAD_BIG_64(blk + 8 * 7);
 438         SHA512ROUND(b, c, d, e, f, g, h, a, 7, w7);
 439         /* LINTED E_BAD_PTR_CAST_ALIGN */
 440         w8 =  LOAD_BIG_64(blk + 8 * 8);
 441         SHA512ROUND(a, b, c, d, e, f, g, h, 8, w8);
 442         /* LINTED E_BAD_PTR_CAST_ALIGN */
 443         w9 =  LOAD_BIG_64(blk + 8 * 9);
 444         SHA512ROUND(h, a, b, c, d, e, f, g, 9, w9);
 445         /* LINTED E_BAD_PTR_CAST_ALIGN */
 446         w10 =  LOAD_BIG_64(blk + 8 * 10);
 447         SHA512ROUND(g, h, a, b, c, d, e, f, 10, w10);
 448         /* LINTED E_BAD_PTR_CAST_ALIGN */
 449         w11 =  LOAD_BIG_64(blk + 8 * 11);
 450         SHA512ROUND(f, g, h, a, b, c, d, e, 11, w11);
 451         /* LINTED E_BAD_PTR_CAST_ALIGN */
 452         w12 =  LOAD_BIG_64(blk + 8 * 12);
 453         SHA512ROUND(e, f, g, h, a, b, c, d, 12, w12);
 454         /* LINTED E_BAD_PTR_CAST_ALIGN */
 455         w13 =  LOAD_BIG_64(blk + 8 * 13);
 456         SHA512ROUND(d, e, f, g, h, a, b, c, 13, w13);
 457         /* LINTED E_BAD_PTR_CAST_ALIGN */
 458         w14 =  LOAD_BIG_64(blk + 8 * 14);
 459         SHA512ROUND(c, d, e, f, g, h, a, b, 14, w14);
 460         /* LINTED E_BAD_PTR_CAST_ALIGN */
 461         w15 =  LOAD_BIG_64(blk + 8 * 15);
 462         SHA512ROUND(b, c, d, e, f, g, h, a, 15, w15);
 463 
 464         w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
 465         SHA512ROUND(a, b, c, d, e, f, g, h, 16, w0);
 466         w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
 467         SHA512ROUND(h, a, b, c, d, e, f, g, 17, w1);
 468         w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
 469         SHA512ROUND(g, h, a, b, c, d, e, f, 18, w2);
 470         w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
 471         SHA512ROUND(f, g, h, a, b, c, d, e, 19, w3);
 472         w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
 473         SHA512ROUND(e, f, g, h, a, b, c, d, 20, w4);
 474         w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
 475         SHA512ROUND(d, e, f, g, h, a, b, c, 21, w5);
 476         w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
 477         SHA512ROUND(c, d, e, f, g, h, a, b, 22, w6);
 478         w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
 479         SHA512ROUND(b, c, d, e, f, g, h, a, 23, w7);
 480         w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
 481         SHA512ROUND(a, b, c, d, e, f, g, h, 24, w8);
 482         w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
 483         SHA512ROUND(h, a, b, c, d, e, f, g, 25, w9);
 484         w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
 485         SHA512ROUND(g, h, a, b, c, d, e, f, 26, w10);
 486         w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
 487         SHA512ROUND(f, g, h, a, b, c, d, e, 27, w11);
 488         w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
 489         SHA512ROUND(e, f, g, h, a, b, c, d, 28, w12);
 490         w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
 491         SHA512ROUND(d, e, f, g, h, a, b, c, 29, w13);
 492         w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
 493         SHA512ROUND(c, d, e, f, g, h, a, b, 30, w14);
 494         w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
 495         SHA512ROUND(b, c, d, e, f, g, h, a, 31, w15);
 496 
 497         w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
 498         SHA512ROUND(a, b, c, d, e, f, g, h, 32, w0);
 499         w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
 500         SHA512ROUND(h, a, b, c, d, e, f, g, 33, w1);
 501         w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
 502         SHA512ROUND(g, h, a, b, c, d, e, f, 34, w2);
 503         w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
 504         SHA512ROUND(f, g, h, a, b, c, d, e, 35, w3);
 505         w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
 506         SHA512ROUND(e, f, g, h, a, b, c, d, 36, w4);
 507         w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
 508         SHA512ROUND(d, e, f, g, h, a, b, c, 37, w5);
 509         w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
 510         SHA512ROUND(c, d, e, f, g, h, a, b, 38, w6);
 511         w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
 512         SHA512ROUND(b, c, d, e, f, g, h, a, 39, w7);
 513         w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
 514         SHA512ROUND(a, b, c, d, e, f, g, h, 40, w8);
 515         w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
 516         SHA512ROUND(h, a, b, c, d, e, f, g, 41, w9);
 517         w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
 518         SHA512ROUND(g, h, a, b, c, d, e, f, 42, w10);
 519         w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
 520         SHA512ROUND(f, g, h, a, b, c, d, e, 43, w11);
 521         w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
 522         SHA512ROUND(e, f, g, h, a, b, c, d, 44, w12);
 523         w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
 524         SHA512ROUND(d, e, f, g, h, a, b, c, 45, w13);
 525         w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
 526         SHA512ROUND(c, d, e, f, g, h, a, b, 46, w14);
 527         w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
 528         SHA512ROUND(b, c, d, e, f, g, h, a, 47, w15);
 529 
 530         w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
 531         SHA512ROUND(a, b, c, d, e, f, g, h, 48, w0);
 532         w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
 533         SHA512ROUND(h, a, b, c, d, e, f, g, 49, w1);
 534         w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
 535         SHA512ROUND(g, h, a, b, c, d, e, f, 50, w2);
 536         w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
 537         SHA512ROUND(f, g, h, a, b, c, d, e, 51, w3);
 538         w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
 539         SHA512ROUND(e, f, g, h, a, b, c, d, 52, w4);
 540         w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
 541         SHA512ROUND(d, e, f, g, h, a, b, c, 53, w5);
 542         w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
 543         SHA512ROUND(c, d, e, f, g, h, a, b, 54, w6);
 544         w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
 545         SHA512ROUND(b, c, d, e, f, g, h, a, 55, w7);
 546         w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
 547         SHA512ROUND(a, b, c, d, e, f, g, h, 56, w8);
 548         w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
 549         SHA512ROUND(h, a, b, c, d, e, f, g, 57, w9);
 550         w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
 551         SHA512ROUND(g, h, a, b, c, d, e, f, 58, w10);
 552         w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
 553         SHA512ROUND(f, g, h, a, b, c, d, e, 59, w11);
 554         w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
 555         SHA512ROUND(e, f, g, h, a, b, c, d, 60, w12);
 556         w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
 557         SHA512ROUND(d, e, f, g, h, a, b, c, 61, w13);
 558         w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
 559         SHA512ROUND(c, d, e, f, g, h, a, b, 62, w14);
 560         w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
 561         SHA512ROUND(b, c, d, e, f, g, h, a, 63, w15);
 562 
 563         w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
 564         SHA512ROUND(a, b, c, d, e, f, g, h, 64, w0);
 565         w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
 566         SHA512ROUND(h, a, b, c, d, e, f, g, 65, w1);
 567         w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
 568         SHA512ROUND(g, h, a, b, c, d, e, f, 66, w2);
 569         w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
 570         SHA512ROUND(f, g, h, a, b, c, d, e, 67, w3);
 571         w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
 572         SHA512ROUND(e, f, g, h, a, b, c, d, 68, w4);
 573         w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
 574         SHA512ROUND(d, e, f, g, h, a, b, c, 69, w5);
 575         w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
 576         SHA512ROUND(c, d, e, f, g, h, a, b, 70, w6);
 577         w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
 578         SHA512ROUND(b, c, d, e, f, g, h, a, 71, w7);
 579         w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
 580         SHA512ROUND(a, b, c, d, e, f, g, h, 72, w8);
 581         w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
 582         SHA512ROUND(h, a, b, c, d, e, f, g, 73, w9);
 583         w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
 584         SHA512ROUND(g, h, a, b, c, d, e, f, 74, w10);
 585         w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
 586         SHA512ROUND(f, g, h, a, b, c, d, e, 75, w11);
 587         w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
 588         SHA512ROUND(e, f, g, h, a, b, c, d, 76, w12);
 589         w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
 590         SHA512ROUND(d, e, f, g, h, a, b, c, 77, w13);
 591         w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
 592         SHA512ROUND(c, d, e, f, g, h, a, b, 78, w14);
 593         w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
 594         SHA512ROUND(b, c, d, e, f, g, h, a, 79, w15);
 595 
 596         ctx->state.s64[0] += a;
 597         ctx->state.s64[1] += b;
 598         ctx->state.s64[2] += c;
 599         ctx->state.s64[3] += d;
 600         ctx->state.s64[4] += e;
 601         ctx->state.s64[5] += f;
 602         ctx->state.s64[6] += g;
 603         ctx->state.s64[7] += h;
 604 
 605 }
 606 #endif  /* !__amd64 */
 607 
 608 
 609 /*
 610  * Encode()
 611  *
 612  * purpose: to convert a list of numbers from little endian to big endian
 613  *   input: uint8_t *   : place to store the converted big endian numbers
 614  *          uint32_t *  : place to get numbers to convert from
 615  *          size_t      : the length of the input in bytes
 616  *  output: void
 617  */
 618 
 619 static void
 620 Encode(uint8_t *_RESTRICT_KYWD output, uint32_t *_RESTRICT_KYWD input,
 621     size_t len)
 622 {
 623         size_t          i, j;
 624 
 625 #if     defined(__sparc)
 626         if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
 627                 for (i = 0, j = 0; j < len; i++, j += 4) {
 628                         /* LINTED: pointer alignment */
 629                         *((uint32_t *)(output + j)) = input[i];
 630                 }
 631         } else {
 632 #endif  /* little endian -- will work on big endian, but slowly */
 633                 for (i = 0, j = 0; j < len; i++, j += 4) {
 634                         output[j]       = (input[i] >> 24) & 0xff;
 635                         output[j + 1]   = (input[i] >> 16) & 0xff;
 636                         output[j + 2]   = (input[i] >>  8) & 0xff;
 637                         output[j + 3]   = input[i] & 0xff;
 638                 }
 639 #if     defined(__sparc)
 640         }
 641 #endif
 642 }
 643 
 644 static void
 645 Encode64(uint8_t *_RESTRICT_KYWD output, uint64_t *_RESTRICT_KYWD input,
 646     size_t len)
 647 {
 648         size_t          i, j;
 649 
 650 #if     defined(__sparc)
 651         if (IS_P2ALIGNED(output, sizeof (uint64_t))) {
 652                 for (i = 0, j = 0; j < len; i++, j += 8) {
 653                         /* LINTED: pointer alignment */
 654                         *((uint64_t *)(output + j)) = input[i];
 655                 }
 656         } else {
 657 #endif  /* little endian -- will work on big endian, but slowly */
 658                 for (i = 0, j = 0; j < len; i++, j += 8) {
 659 
 660                         output[j]       = (input[i] >> 56) & 0xff;
 661                         output[j + 1]   = (input[i] >> 48) & 0xff;
 662                         output[j + 2]   = (input[i] >> 40) & 0xff;
 663                         output[j + 3]   = (input[i] >> 32) & 0xff;
 664                         output[j + 4]   = (input[i] >> 24) & 0xff;
 665                         output[j + 5]   = (input[i] >> 16) & 0xff;
 666                         output[j + 6]   = (input[i] >>  8) & 0xff;
 667                         output[j + 7]   = input[i] & 0xff;
 668                 }
 669 #if     defined(__sparc)
 670         }
 671 #endif
 672 }
 673 
 674 
 675 void
 676 SHA2Init(uint64_t mech, SHA2_CTX *ctx)
 677 {
 678 
 679         switch (mech) {
 680         case SHA256_MECH_INFO_TYPE:
 681         case SHA256_HMAC_MECH_INFO_TYPE:
 682         case SHA256_HMAC_GEN_MECH_INFO_TYPE:
 683                 ctx->state.s32[0] = 0x6a09e667U;
 684                 ctx->state.s32[1] = 0xbb67ae85U;
 685                 ctx->state.s32[2] = 0x3c6ef372U;
 686                 ctx->state.s32[3] = 0xa54ff53aU;
 687                 ctx->state.s32[4] = 0x510e527fU;
 688                 ctx->state.s32[5] = 0x9b05688cU;
 689                 ctx->state.s32[6] = 0x1f83d9abU;
 690                 ctx->state.s32[7] = 0x5be0cd19U;
 691                 break;
 692         case SHA384_MECH_INFO_TYPE:
 693         case SHA384_HMAC_MECH_INFO_TYPE:
 694         case SHA384_HMAC_GEN_MECH_INFO_TYPE:
 695                 ctx->state.s64[0] = 0xcbbb9d5dc1059ed8ULL;
 696                 ctx->state.s64[1] = 0x629a292a367cd507ULL;
 697                 ctx->state.s64[2] = 0x9159015a3070dd17ULL;
 698                 ctx->state.s64[3] = 0x152fecd8f70e5939ULL;
 699                 ctx->state.s64[4] = 0x67332667ffc00b31ULL;
 700                 ctx->state.s64[5] = 0x8eb44a8768581511ULL;
 701                 ctx->state.s64[6] = 0xdb0c2e0d64f98fa7ULL;
 702                 ctx->state.s64[7] = 0x47b5481dbefa4fa4ULL;
 703                 break;
 704         case SHA512_MECH_INFO_TYPE:
 705         case SHA512_HMAC_MECH_INFO_TYPE:
 706         case SHA512_HMAC_GEN_MECH_INFO_TYPE:
 707                 ctx->state.s64[0] = 0x6a09e667f3bcc908ULL;
 708                 ctx->state.s64[1] = 0xbb67ae8584caa73bULL;
 709                 ctx->state.s64[2] = 0x3c6ef372fe94f82bULL;
 710                 ctx->state.s64[3] = 0xa54ff53a5f1d36f1ULL;
 711                 ctx->state.s64[4] = 0x510e527fade682d1ULL;
 712                 ctx->state.s64[5] = 0x9b05688c2b3e6c1fULL;
 713                 ctx->state.s64[6] = 0x1f83d9abfb41bd6bULL;
 714                 ctx->state.s64[7] = 0x5be0cd19137e2179ULL;
 715                 break;
 716 #ifdef _KERNEL
 717         default:
 718                 cmn_err(CE_PANIC, "sha2_init: "
 719                     "failed to find a supported algorithm: 0x%x",
 720                     (uint32_t)mech);
 721 
 722 #endif /* _KERNEL */
 723         }
 724 
 725         ctx->algotype = mech;
 726         ctx->count.c64[0] = ctx->count.c64[1] = 0;
 727 }
 728 
 729 #ifndef _KERNEL
 730 
 731 #pragma inline(SHA256Init, SHA384Init, SHA512Init)
 732 void
 733 SHA256Init(SHA256_CTX *ctx)
 734 {
 735         SHA2Init(SHA256, ctx);
 736 }
 737 
 738 void
 739 SHA384Init(SHA384_CTX *ctx)
 740 {
 741         SHA2Init(SHA384, ctx);
 742 }
 743 
 744 void
 745 SHA512Init(SHA512_CTX *ctx)
 746 {
 747         SHA2Init(SHA512, ctx);
 748 }
 749 
 750 #endif /* _KERNEL */
 751 
 752 /*
 753  * SHA2Update()
 754  *
 755  * purpose: continues an sha2 digest operation, using the message block
 756  *          to update the context.
 757  *   input: SHA2_CTX *  : the context to update
 758  *          void *      : the message block
 759  *          size_t      : the length of the message block, in bytes
 760  *  output: void
 761  */
 762 
 763 void
 764 SHA2Update(SHA2_CTX *ctx, const void *inptr, size_t input_len)
 765 {
 766         uint32_t        i, buf_index, buf_len, buf_limit;
 767         const uint8_t   *input = inptr;
 768         uint32_t        algotype = ctx->algotype;
 769 #if defined(__amd64)
 770         uint32_t        block_count;
 771 #endif  /* !__amd64 */
 772 
 773 
 774         /* check for noop */
 775         if (input_len == 0)
 776                 return;
 777 
 778         if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
 779                 buf_limit = 64;
 780 
 781                 /* compute number of bytes mod 64 */
 782                 buf_index = (ctx->count.c32[1] >> 3) & 0x3F;
 783 
 784                 /* update number of bits */
 785                 if ((ctx->count.c32[1] += (input_len << 3)) < (input_len << 3))
 786                         ctx->count.c32[0]++;
 787 
 788                 ctx->count.c32[0] += (input_len >> 29);
 789 
 790         } else {
 791                 buf_limit = 128;
 792 
 793                 /* compute number of bytes mod 128 */
 794                 buf_index = (ctx->count.c64[1] >> 3) & 0x7F;
 795 
 796                 /* update number of bits */
 797                 if ((ctx->count.c64[1] += (input_len << 3)) < (input_len << 3))
 798                         ctx->count.c64[0]++;
 799 
 800                 ctx->count.c64[0] += (input_len >> 29);
 801         }
 802 
 803         buf_len = buf_limit - buf_index;
 804 
 805         /* transform as many times as possible */
 806         i = 0;
 807         if (input_len >= buf_len) {
 808 
 809                 /*
 810                  * general optimization:
 811                  *
 812                  * only do initial bcopy() and SHA2Transform() if
 813                  * buf_index != 0.  if buf_index == 0, we're just
 814                  * wasting our time doing the bcopy() since there
 815                  * wasn't any data left over from a previous call to
 816                  * SHA2Update().
 817                  */
 818                 if (buf_index) {
 819                         bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
 820                         if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE)
 821                                 SHA256Transform(ctx, ctx->buf_un.buf8);
 822                         else
 823                                 SHA512Transform(ctx, ctx->buf_un.buf8);
 824 
 825                         i = buf_len;
 826                 }
 827 
 828 #if !defined(__amd64)
 829                 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
 830                         for (; i + buf_limit - 1 < input_len; i += buf_limit) {
 831                                 SHA256Transform(ctx, &input[i]);
 832                         }
 833                 } else {
 834                         for (; i + buf_limit - 1 < input_len; i += buf_limit) {
 835                                 SHA512Transform(ctx, &input[i]);
 836                         }
 837                 }
 838 
 839 #else
 840                 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
 841                         block_count = (input_len - i) >> 6;
 842                         if (block_count > 0) {
 843                                 SHA256TransformBlocks(ctx, &input[i],
 844                                     block_count);
 845                                 i += block_count << 6;
 846                         }
 847                 } else {
 848                         block_count = (input_len - i) >> 7;
 849                         if (block_count > 0) {
 850                                 SHA512TransformBlocks(ctx, &input[i],
 851                                     block_count);
 852                                 i += block_count << 7;
 853                         }
 854                 }
 855 #endif  /* !__amd64 */
 856 
 857                 /*
 858                  * general optimization:
 859                  *
 860                  * if i and input_len are the same, return now instead
 861                  * of calling bcopy(), since the bcopy() in this case
 862                  * will be an expensive noop.
 863                  */
 864 
 865                 if (input_len == i)
 866                         return;
 867 
 868                 buf_index = 0;
 869         }
 870 
 871         /* buffer remaining input */
 872         bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
 873 }
 874 
 875 
 876 /*
 877  * SHA2Final()
 878  *
 879  * purpose: ends an sha2 digest operation, finalizing the message digest and
 880  *          zeroing the context.
 881  *   input: uchar_t *   : a buffer to store the digest
 882  *                      : The function actually uses void* because many
 883  *                      : callers pass things other than uchar_t here.
 884  *          SHA2_CTX *  : the context to finalize, save, and zero
 885  *  output: void
 886  */
 887 
 888 void
 889 SHA2Final(void *digest, SHA2_CTX *ctx)
 890 {
 891         uint8_t         bitcount_be[sizeof (ctx->count.c32)];
 892         uint8_t         bitcount_be64[sizeof (ctx->count.c64)];
 893         uint32_t        index;
 894         uint32_t        algotype = ctx->algotype;
 895 
 896         if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
 897                 index  = (ctx->count.c32[1] >> 3) & 0x3f;
 898                 Encode(bitcount_be, ctx->count.c32, sizeof (bitcount_be));
 899                 SHA2Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
 900                 SHA2Update(ctx, bitcount_be, sizeof (bitcount_be));
 901                 Encode(digest, ctx->state.s32, sizeof (ctx->state.s32));
 902 
 903         } else {
 904                 index  = (ctx->count.c64[1] >> 3) & 0x7f;
 905                 Encode64(bitcount_be64, ctx->count.c64,
 906                     sizeof (bitcount_be64));
 907                 SHA2Update(ctx, PADDING, ((index < 112) ? 112 : 240) - index);
 908                 SHA2Update(ctx, bitcount_be64, sizeof (bitcount_be64));
 909                 if (algotype <= SHA384_HMAC_GEN_MECH_INFO_TYPE) {
 910                         ctx->state.s64[6] = ctx->state.s64[7] = 0;
 911                         Encode64(digest, ctx->state.s64,
 912                             sizeof (uint64_t) * 6);
 913                 } else
 914                         Encode64(digest, ctx->state.s64,
 915                             sizeof (ctx->state.s64));
 916         }
 917 
 918         /* zeroize sensitive information */
 919         bzero(ctx, sizeof (*ctx));
 920 }