1 /*
   2  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
   3  * Use is subject to license terms.
   4  */
   5 
   6 #pragma ident   "@(#)sha1.c     1.26    07/04/10 SMI"
   7 
   8 /*
   9  * The basic framework for this code came from the reference
  10  * implementation for MD5.  That implementation is Copyright (C)
  11  * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
  12  *
  13  * License to copy and use this software is granted provided that it
  14  * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
  15  * Algorithm" in all material mentioning or referencing this software
  16  * or this function.
  17  *
  18  * License is also granted to make and use derivative works provided
  19  * that such works are identified as "derived from the RSA Data
  20  * Security, Inc. MD5 Message-Digest Algorithm" in all material
  21  * mentioning or referencing the derived work.
  22  *
  23  * RSA Data Security, Inc. makes no representations concerning either
  24  * the merchantability of this software or the suitability of this
  25  * software for any particular purpose. It is provided "as is"
  26  * without express or implied warranty of any kind.
  27  *
  28  * These notices must be retained in any copies of any part of this
  29  * documentation and/or software.
  30  *
  31  * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1
  32  * standard, available at http://www.itl.nist.gov/div897/pubs/fip180-1.htm
  33  * Not as fast as one would like -- further optimizations are encouraged
  34  * and appreciated.
  35  */
  36 
  37 #include <sys/types.h>
  38 #include <sys/param.h>
  39 #include <sys/systm.h>
  40 #include <sys/sysmacros.h>
  41 #include <sys/sha1.h>
  42 #include <sys/sha1_consts.h>
  43 
  44 #ifndef _KERNEL
  45 #include <strings.h>
  46 #include <stdlib.h>
  47 #include <errno.h>
  48 #include <sys/systeminfo.h>
  49 #endif  /* !_KERNEL */
  50 
  51 static void Encode(uint8_t *, const uint32_t *, size_t);
  52 
  53 #if     defined(__sparc)
  54 
  55 #define SHA1_TRANSFORM(ctx, in) \
  56         SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \
  57                 (ctx)->state[3], (ctx)->state[4], (ctx), (in))
  58 
  59 static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t,
  60     SHA1_CTX *, const uint8_t *);
  61 
  62 #else
  63 
  64 #define SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in))
  65 
  66 static void SHA1Transform(SHA1_CTX *, const uint8_t *);
  67 
  68 #endif
  69 
  70 
  71 static uint8_t PADDING[64] = { 0x80, /* all zeros */ };
  72 
  73 /*
  74  * F, G, and H are the basic SHA1 functions.
  75  */
  76 #define F(b, c, d)      (((b) & (c)) | ((~b) & (d)))
  77 #define G(b, c, d)      ((b) ^ (c) ^ (d))
  78 #define H(b, c, d)      (((b) & (c)) | (((b)|(c)) & (d)))
  79 
  80 /*
  81  * ROTATE_LEFT rotates x left n bits.
  82  */
  83 
  84 #if     defined(__GNUC__) && defined(_LP64)
  85 static __inline__ uint64_t
  86 ROTATE_LEFT(uint64_t value, uint32_t n)
  87 {
  88         uint32_t t32;
  89 
  90         t32 = (uint32_t)value;
  91         return ((t32 << n) | (t32 >> (32 - n)));
  92 }
  93 
  94 #else
  95 
  96 #define ROTATE_LEFT(x, n)       \
  97         (((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n))))
  98 
  99 #endif
 100 
 101 #if     defined(__GNUC__) && (defined(__i386) || defined(__amd64))
 102 
 103 #define HAVE_BSWAP
 104 
 105 extern __inline__ uint32_t bswap(uint32_t value)
 106 {
 107         __asm__("bswap %0" : "+r" (value));
 108         return (value);
 109 }
 110 
 111 #endif
 112 
 113 /*
 114  * SHA1Init()
 115  *
 116  * purpose: initializes the sha1 context and begins and sha1 digest operation
 117  *   input: SHA1_CTX *  : the context to initializes.
 118  *  output: void
 119  */
 120 
 121 void
 122 SHA1Init(SHA1_CTX *ctx)
 123 {
 124         ctx->count[0] = ctx->count[1] = 0;
 125 
 126         /*
 127          * load magic initialization constants. Tell lint
 128          * that these constants are unsigned by using U.
 129          */
 130 
 131         ctx->state[0] = 0x67452301U;
 132         ctx->state[1] = 0xefcdab89U;
 133         ctx->state[2] = 0x98badcfeU;
 134         ctx->state[3] = 0x10325476U;
 135         ctx->state[4] = 0xc3d2e1f0U;
 136 }
 137 
 138 #ifdef VIS_SHA1
 139 #ifdef _KERNEL
 140 
 141 #include <sys/regset.h>
 142 #include <sys/vis.h>
 143 #include <sys/fpu/fpusystm.h>
 144 
 145 /* the alignment for block stores to save fp registers */
 146 #define VIS_ALIGN       (64)
 147 
 148 extern int sha1_savefp(kfpu_t *, int);
 149 extern void sha1_restorefp(kfpu_t *);
 150 
 151 uint32_t        vis_sha1_svfp_threshold = 128;
 152 
 153 #endif /* _KERNEL */
 154 
 155 /*
 156  * VIS SHA-1 consts.
 157  */
 158 static uint64_t VIS[] = {
 159         0x8000000080000000ULL,
 160         0x0002000200020002ULL,
 161         0x5a8279996ed9eba1ULL,
 162         0x8f1bbcdcca62c1d6ULL,
 163         0x012389ab456789abULL};
 164 
 165 extern void SHA1TransformVIS(uint64_t *, uint32_t *, uint32_t *, uint64_t *);
 166 
 167 
 168 /*
 169  * SHA1Update()
 170  *
 171  * purpose: continues an sha1 digest operation, using the message block
 172  *          to update the context.
 173  *   input: SHA1_CTX *  : the context to update
 174  *          void *      : the message block
 175  *          size_t    : the length of the message block in bytes
 176  *  output: void
 177  */
 178 
 179 void
 180 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
 181 {
 182         uint32_t i, buf_index, buf_len;
 183         uint64_t X0[40], input64[8];
 184         const uint8_t *input = inptr;
 185 #ifdef _KERNEL
 186         int usevis = 0;
 187 #else
 188         int usevis = 1;
 189 #endif /* _KERNEL */
 190 
 191         /* check for noop */
 192         if (input_len == 0)
 193                 return;
 194 
 195         /* compute number of bytes mod 64 */
 196         buf_index = (ctx->count[1] >> 3) & 0x3F;
 197 
 198         /* update number of bits */
 199         if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
 200                 ctx->count[0]++;
 201 
 202         ctx->count[0] += (input_len >> 29);
 203 
 204         buf_len = 64 - buf_index;
 205 
 206         /* transform as many times as possible */
 207         i = 0;
 208         if (input_len >= buf_len) {
 209 #ifdef _KERNEL
 210                 kfpu_t *fpu;
 211                 if (fpu_exists) {
 212                         uint8_t fpua[sizeof (kfpu_t) + GSR_SIZE + VIS_ALIGN];
 213                         uint32_t len = (input_len + buf_index) & ~0x3f;
 214                         int svfp_ok;
 215 
 216                         fpu = (kfpu_t *)P2ROUNDUP((uintptr_t)fpua, 64);
 217                         svfp_ok = ((len >= vis_sha1_svfp_threshold) ? 1 : 0);
 218                         usevis = fpu_exists && sha1_savefp(fpu, svfp_ok);
 219                 } else {
 220                         usevis = 0;
 221                 }
 222 #endif /* _KERNEL */
 223 
 224                 /*
 225                  * general optimization:
 226                  *
 227                  * only do initial bcopy() and SHA1Transform() if
 228                  * buf_index != 0.  if buf_index == 0, we're just
 229                  * wasting our time doing the bcopy() since there
 230                  * wasn't any data left over from a previous call to
 231                  * SHA1Update().
 232                  */
 233 
 234                 if (buf_index) {
 235                         bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
 236                         if (usevis) {
 237                                 SHA1TransformVIS(X0,
 238                                     ctx->buf_un.buf32,
 239                                     &ctx->state[0], VIS);
 240                         } else {
 241                                 SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
 242                         }
 243                         i = buf_len;
 244                 }
 245 
 246                 /*
 247                  * VIS SHA-1: uses the VIS 1.0 instructions to accelerate
 248                  * SHA-1 processing. This is achieved by "offloading" the
 249                  * computation of the message schedule (MS) to the VIS units.
 250                  * This allows the VIS computation of the message schedule
 251                  * to be performed in parallel with the standard integer
 252                  * processing of the remainder of the SHA-1 computation.
 253                  * performance by up to around 1.37X, compared to an optimized
 254                  * integer-only implementation.
 255                  *
 256                  * The VIS implementation of SHA1Transform has a different API
 257                  * to the standard integer version:
 258                  *
 259                  * void SHA1TransformVIS(
 260                  *       uint64_t *, // Pointer to MS for ith block
 261                  *       uint32_t *, // Pointer to ith block of message data
 262                  *       uint32_t *, // Pointer to SHA state i.e ctx->state
 263                  *       uint64_t *, // Pointer to various VIS constants
 264                  * )
 265                  *
 266                  * Note: the message data must by 4-byte aligned.
 267                  *
 268                  * Function requires VIS 1.0 support.
 269                  *
 270                  * Handling is provided to deal with arbitrary byte alingment
 271                  * of the input data but the performance gains are reduced
 272                  * for alignments other than 4-bytes.
 273                  */
 274                 if (usevis) {
 275                         if (!IS_P2ALIGNED(&input[i], sizeof (uint32_t))) {
 276                                 /*
 277                                  * Main processing loop - input misaligned
 278                                  */
 279                                 for (; i + 63 < input_len; i += 64) {
 280                                     bcopy(&input[i], input64, 64);
 281                                     SHA1TransformVIS(X0, (uint32_t *)input64,
 282                                         &ctx->state[0], VIS);
 283                                 }
 284                         } else {
 285                                 /*
 286                                  * Main processing loop - input 8-byte aligned
 287                                  */
 288                                 for (; i + 63 < input_len; i += 64) {
 289                                         SHA1TransformVIS(X0,
 290                                             /* LINTED E_BAD_PTR_CAST_ALIGN */
 291                                             (uint32_t *)&input[i],
 292                                             &ctx->state[0], VIS);
 293                                 }
 294 
 295                         }
 296 #ifdef _KERNEL
 297                         sha1_restorefp(fpu);
 298 #endif /* _KERNEL */
 299                 } else {
 300                         for (; i + 63 < input_len; i += 64) {
 301                             SHA1_TRANSFORM(ctx, &input[i]);
 302                         }
 303                 }
 304 
 305                 /*
 306                  * general optimization:
 307                  *
 308                  * if i and input_len are the same, return now instead
 309                  * of calling bcopy(), since the bcopy() in this case
 310                  * will be an expensive nop.
 311                  */
 312 
 313                 if (input_len == i)
 314                         return;
 315 
 316                 buf_index = 0;
 317         }
 318 
 319         /* buffer remaining input */
 320         bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
 321 }
 322 
 323 #else /* VIS_SHA1 */
 324 
 325 void
 326 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
 327 {
 328         uint32_t i, buf_index, buf_len;
 329         const uint8_t *input = inptr;
 330 
 331         /* check for noop */
 332         if (input_len == 0)
 333                 return;
 334 
 335         /* compute number of bytes mod 64 */
 336         buf_index = (ctx->count[1] >> 3) & 0x3F;
 337 
 338         /* update number of bits */
 339         if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
 340                 ctx->count[0]++;
 341 
 342         ctx->count[0] += (input_len >> 29);
 343 
 344         buf_len = 64 - buf_index;
 345 
 346         /* transform as many times as possible */
 347         i = 0;
 348         if (input_len >= buf_len) {
 349 
 350                 /*
 351                  * general optimization:
 352                  *
 353                  * only do initial bcopy() and SHA1Transform() if
 354                  * buf_index != 0.  if buf_index == 0, we're just
 355                  * wasting our time doing the bcopy() since there
 356                  * wasn't any data left over from a previous call to
 357                  * SHA1Update().
 358                  */
 359 
 360                 if (buf_index) {
 361                         bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
 362                         SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
 363                         i = buf_len;
 364                 }
 365 
 366                 for (; i + 63 < input_len; i += 64)
 367                         SHA1_TRANSFORM(ctx, &input[i]);
 368 
 369                 /*
 370                  * general optimization:
 371                  *
 372                  * if i and input_len are the same, return now instead
 373                  * of calling bcopy(), since the bcopy() in this case
 374                  * will be an expensive nop.
 375                  */
 376 
 377                 if (input_len == i)
 378                         return;
 379 
 380                 buf_index = 0;
 381         }
 382 
 383         /* buffer remaining input */
 384         bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
 385 }
 386 
 387 #endif /* VIS_SHA1 */
 388 
 389 /*
 390  * SHA1Final()
 391  *
 392  * purpose: ends an sha1 digest operation, finalizing the message digest and
 393  *          zeroing the context.
 394  *   input: uchar_t *   : a buffer to store the digest in
 395  *                      : The function actually uses void* because many
 396  *                      : callers pass things other than uchar_t here.
 397  *          SHA1_CTX *  : the context to finalize, save, and zero
 398  *  output: void
 399  */
 400 
 401 void
 402 SHA1Final(void *digest, SHA1_CTX *ctx)
 403 {
 404         uint8_t         bitcount_be[sizeof (ctx->count)];
 405         uint32_t        index = (ctx->count[1] >> 3) & 0x3f;
 406 
 407         /* store bit count, big endian */
 408         Encode(bitcount_be, ctx->count, sizeof (bitcount_be));
 409 
 410         /* pad out to 56 mod 64 */
 411         SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
 412 
 413         /* append length (before padding) */
 414         SHA1Update(ctx, bitcount_be, sizeof (bitcount_be));
 415 
 416         /* store state in digest */
 417         Encode(digest, ctx->state, sizeof (ctx->state));
 418 
 419         /* zeroize sensitive information */
 420         bzero(ctx, sizeof (*ctx));
 421 }
 422 
 423 typedef uint32_t sha1word;
 424 
 425 /*
 426  * sparc optimization:
 427  *
 428  * on the sparc, we can load big endian 32-bit data easily.  note that
 429  * special care must be taken to ensure the address is 32-bit aligned.
 430  * in the interest of speed, we don't check to make sure, since
 431  * careful programming can guarantee this for us.
 432  */
 433 
 434 #if     defined(_BIG_ENDIAN)
 435 
 436 #define LOAD_BIG_32(addr)       (*(uint32_t *)(addr))
 437 
 438 #else   /* !defined(_BIG_ENDIAN) */
 439 
 440 #if     defined(HAVE_BSWAP)
 441 
 442 #define LOAD_BIG_32(addr) bswap(*((uint32_t *)(addr)))
 443 
 444 #else   /* !defined(HAVE_BSWAP) */
 445 
 446 /* little endian -- will work on big endian, but slowly */
 447 #define LOAD_BIG_32(addr)       \
 448         (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
 449 
 450 #endif  /* !defined(HAVE_BSWAP) */
 451 
 452 #endif  /* !defined(_BIG_ENDIAN) */
 453 
 454 /*
 455  * SHA1Transform()
 456  */
 457 #if     defined(W_ARRAY)
 458 #define W(n) w[n]
 459 #else   /* !defined(W_ARRAY) */
 460 #define W(n) w_ ## n
 461 #endif  /* !defined(W_ARRAY) */
 462 
 463 
 464 #if     defined(__sparc)
 465 
 466 /*
 467  * sparc register window optimization:
 468  *
 469  * `a', `b', `c', `d', and `e' are passed into SHA1Transform
 470  * explicitly since it increases the number of registers available to
 471  * the compiler.  under this scheme, these variables can be held in
 472  * %i0 - %i4, which leaves more local and out registers available.
 473  *
 474  * purpose: sha1 transformation -- updates the digest based on `block'
 475  *   input: uint32_t    : bytes  1 -  4 of the digest
 476  *          uint32_t    : bytes  5 -  8 of the digest
 477  *          uint32_t    : bytes  9 - 12 of the digest
 478  *          uint32_t    : bytes 12 - 16 of the digest
 479  *          uint32_t    : bytes 16 - 20 of the digest
 480  *          SHA1_CTX *  : the context to update
 481  *          uint8_t [64]: the block to use to update the digest
 482  *  output: void
 483  */
 484 
 485 void
 486 SHA1Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e,
 487     SHA1_CTX *ctx, const uint8_t blk[64])
 488 {
 489         /*
 490          * sparc optimization:
 491          *
 492          * while it is somewhat counter-intuitive, on sparc, it is
 493          * more efficient to place all the constants used in this
 494          * function in an array and load the values out of the array
 495          * than to manually load the constants.  this is because
 496          * setting a register to a 32-bit value takes two ops in most
 497          * cases: a `sethi' and an `or', but loading a 32-bit value
 498          * from memory only takes one `ld' (or `lduw' on v9).  while
 499          * this increases memory usage, the compiler can find enough
 500          * other things to do while waiting to keep the pipeline does
 501          * not stall.  additionally, it is likely that many of these
 502          * constants are cached so that later accesses do not even go
 503          * out to the bus.
 504          *
 505          * this array is declared `static' to keep the compiler from
 506          * having to bcopy() this array onto the stack frame of
 507          * SHA1Transform() each time it is called -- which is
 508          * unacceptably expensive.
 509          *
 510          * the `const' is to ensure that callers are good citizens and
 511          * do not try to munge the array.  since these routines are
 512          * going to be called from inside multithreaded kernelland,
 513          * this is a good safety check. -- `sha1_consts' will end up in
 514          * .rodata.
 515          *
 516          * unfortunately, loading from an array in this manner hurts
 517          * performance under intel.  so, there is a macro,
 518          * SHA1_CONST(), used in SHA1Transform(), that either expands to
 519          * a reference to this array, or to the actual constant,
 520          * depending on what platform this code is compiled for.
 521          */
 522 
 523         static const uint32_t sha1_consts[] = {
 524                 SHA1_CONST_0,   SHA1_CONST_1,   SHA1_CONST_2,   SHA1_CONST_3,
 525         };
 526 
 527         /*
 528          * general optimization:
 529          *
 530          * use individual integers instead of using an array.  this is a
 531          * win, although the amount it wins by seems to vary quite a bit.
 532          */
 533 
 534         uint32_t        w_0, w_1, w_2,  w_3,  w_4,  w_5,  w_6,  w_7;
 535         uint32_t        w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
 536 
 537         /*
 538          * sparc optimization:
 539          *
 540          * if `block' is already aligned on a 4-byte boundary, use
 541          * LOAD_BIG_32() directly.  otherwise, bcopy() into a
 542          * buffer that *is* aligned on a 4-byte boundary and then do
 543          * the LOAD_BIG_32() on that buffer.  benchmarks have shown
 544          * that using the bcopy() is better than loading the bytes
 545          * individually and doing the endian-swap by hand.
 546          *
 547          * even though it's quite tempting to assign to do:
 548          *
 549          * blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32));
 550          *
 551          * and only have one set of LOAD_BIG_32()'s, the compiler
 552          * *does not* like that, so please resist the urge.
 553          */
 554 
 555         if ((uintptr_t)blk & 0x3) {         /* not 4-byte aligned? */
 556                 bcopy(blk, ctx->buf_un.buf32,  sizeof (ctx->buf_un.buf32));
 557                 w_15 = LOAD_BIG_32(ctx->buf_un.buf32 + 15);
 558                 w_14 = LOAD_BIG_32(ctx->buf_un.buf32 + 14);
 559                 w_13 = LOAD_BIG_32(ctx->buf_un.buf32 + 13);
 560                 w_12 = LOAD_BIG_32(ctx->buf_un.buf32 + 12);
 561                 w_11 = LOAD_BIG_32(ctx->buf_un.buf32 + 11);
 562                 w_10 = LOAD_BIG_32(ctx->buf_un.buf32 + 10);
 563                 w_9  = LOAD_BIG_32(ctx->buf_un.buf32 +  9);
 564                 w_8  = LOAD_BIG_32(ctx->buf_un.buf32 +  8);
 565                 w_7  = LOAD_BIG_32(ctx->buf_un.buf32 +  7);
 566                 w_6  = LOAD_BIG_32(ctx->buf_un.buf32 +  6);
 567                 w_5  = LOAD_BIG_32(ctx->buf_un.buf32 +  5);
 568                 w_4  = LOAD_BIG_32(ctx->buf_un.buf32 +  4);
 569                 w_3  = LOAD_BIG_32(ctx->buf_un.buf32 +  3);
 570                 w_2  = LOAD_BIG_32(ctx->buf_un.buf32 +  2);
 571                 w_1  = LOAD_BIG_32(ctx->buf_un.buf32 +  1);
 572                 w_0  = LOAD_BIG_32(ctx->buf_un.buf32 +  0);
 573         } else {
 574                 /*LINTED*/
 575                 w_15 = LOAD_BIG_32(blk + 60);
 576                 /*LINTED*/
 577                 w_14 = LOAD_BIG_32(blk + 56);
 578                 /*LINTED*/
 579                 w_13 = LOAD_BIG_32(blk + 52);
 580                 /*LINTED*/
 581                 w_12 = LOAD_BIG_32(blk + 48);
 582                 /*LINTED*/
 583                 w_11 = LOAD_BIG_32(blk + 44);
 584                 /*LINTED*/
 585                 w_10 = LOAD_BIG_32(blk + 40);
 586                 /*LINTED*/
 587                 w_9  = LOAD_BIG_32(blk + 36);
 588                 /*LINTED*/
 589                 w_8  = LOAD_BIG_32(blk + 32);
 590                 /*LINTED*/
 591                 w_7  = LOAD_BIG_32(blk + 28);
 592                 /*LINTED*/
 593                 w_6  = LOAD_BIG_32(blk + 24);
 594                 /*LINTED*/
 595                 w_5  = LOAD_BIG_32(blk + 20);
 596                 /*LINTED*/
 597                 w_4  = LOAD_BIG_32(blk + 16);
 598                 /*LINTED*/
 599                 w_3  = LOAD_BIG_32(blk + 12);
 600                 /*LINTED*/
 601                 w_2  = LOAD_BIG_32(blk +  8);
 602                 /*LINTED*/
 603                 w_1  = LOAD_BIG_32(blk +  4);
 604                 /*LINTED*/
 605                 w_0  = LOAD_BIG_32(blk +  0);
 606         }
 607 #else   /* !defined(__sparc) */
 608 
 609 void
 610 SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64])
 611 {
 612         sha1word a = ctx->state[0];
 613         sha1word b = ctx->state[1];
 614         sha1word c = ctx->state[2];
 615         sha1word d = ctx->state[3];
 616         sha1word e = ctx->state[4];
 617 
 618 #if     defined(W_ARRAY)
 619         sha1word        w[16];
 620 #else   /* !defined(W_ARRAY) */
 621         sha1word        w_0, w_1, w_2,  w_3,  w_4,  w_5,  w_6,  w_7;
 622         sha1word        w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
 623 #endif  /* !defined(W_ARRAY) */
 624 
 625         W(0)  = LOAD_BIG_32(blk +  0);
 626         W(1)  = LOAD_BIG_32(blk +  4);
 627         W(2)  = LOAD_BIG_32(blk +  8);
 628         W(3)  = LOAD_BIG_32(blk + 12);
 629         W(4)  = LOAD_BIG_32(blk + 16);
 630         W(5)  = LOAD_BIG_32(blk + 20);
 631         W(6)  = LOAD_BIG_32(blk + 24);
 632         W(7)  = LOAD_BIG_32(blk + 28);
 633         W(8)  = LOAD_BIG_32(blk + 32);
 634         W(9)  = LOAD_BIG_32(blk + 36);
 635         W(10) = LOAD_BIG_32(blk + 40);
 636         W(11) = LOAD_BIG_32(blk + 44);
 637         W(12) = LOAD_BIG_32(blk + 48);
 638         W(13) = LOAD_BIG_32(blk + 52);
 639         W(14) = LOAD_BIG_32(blk + 56);
 640         W(15) = LOAD_BIG_32(blk + 60);
 641 
 642 #endif  /* !defined(__sparc) */
 643 
 644         /*
 645          * general optimization:
 646          *
 647          * even though this approach is described in the standard as
 648          * being slower algorithmically, it is 30-40% faster than the
 649          * "faster" version under SPARC, because this version has more
 650          * of the constraints specified at compile-time and uses fewer
 651          * variables (and therefore has better register utilization)
 652          * than its "speedier" brother.  (i've tried both, trust me)
 653          *
 654          * for either method given in the spec, there is an "assignment"
 655          * phase where the following takes place:
 656          *
 657          *      tmp = (main_computation);
 658          *      e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp;
 659          *
 660          * we can make the algorithm go faster by not doing this work,
 661          * but just pretending that `d' is now `e', etc. this works
 662          * really well and obviates the need for a temporary variable.
 663          * however, we still explictly perform the rotate action,
 664          * since it is cheaper on SPARC to do it once than to have to
 665          * do it over and over again.
 666          */
 667 
 668         /* round 1 */
 669         e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */
 670         b = ROTATE_LEFT(b, 30);
 671 
 672         d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */
 673         a = ROTATE_LEFT(a, 30);
 674 
 675         c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */
 676         e = ROTATE_LEFT(e, 30);
 677 
 678         b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */
 679         d = ROTATE_LEFT(d, 30);
 680 
 681         a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */
 682         c = ROTATE_LEFT(c, 30);
 683 
 684         e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */
 685         b = ROTATE_LEFT(b, 30);
 686 
 687         d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */
 688         a = ROTATE_LEFT(a, 30);
 689 
 690         c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */
 691         e = ROTATE_LEFT(e, 30);
 692 
 693         b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */
 694         d = ROTATE_LEFT(d, 30);
 695 
 696         a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */
 697         c = ROTATE_LEFT(c, 30);
 698 
 699         e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */
 700         b = ROTATE_LEFT(b, 30);
 701 
 702         d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */
 703         a = ROTATE_LEFT(a, 30);
 704 
 705         c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */
 706         e = ROTATE_LEFT(e, 30);
 707 
 708         b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */
 709         d = ROTATE_LEFT(d, 30);
 710 
 711         a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */
 712         c = ROTATE_LEFT(c, 30);
 713 
 714         e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */
 715         b = ROTATE_LEFT(b, 30);
 716 
 717         W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);            /* 16 */
 718         d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0);
 719         a = ROTATE_LEFT(a, 30);
 720 
 721         W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);            /* 17 */
 722         c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0);
 723         e = ROTATE_LEFT(e, 30);
 724 
 725         W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);   /* 18 */
 726         b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0);
 727         d = ROTATE_LEFT(d, 30);
 728 
 729         W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);            /* 19 */
 730         a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0);
 731         c = ROTATE_LEFT(c, 30);
 732 
 733         /* round 2 */
 734         W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);            /* 20 */
 735         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1);
 736         b = ROTATE_LEFT(b, 30);
 737 
 738         W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);            /* 21 */
 739         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1);
 740         a = ROTATE_LEFT(a, 30);
 741 
 742         W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);            /* 22 */
 743         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1);
 744         e = ROTATE_LEFT(e, 30);
 745 
 746         W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);            /* 23 */
 747         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1);
 748         d = ROTATE_LEFT(d, 30);
 749 
 750         W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);            /* 24 */
 751         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1);
 752         c = ROTATE_LEFT(c, 30);
 753 
 754         W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);            /* 25 */
 755         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1);
 756         b = ROTATE_LEFT(b, 30);
 757 
 758         W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);  /* 26 */
 759         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1);
 760         a = ROTATE_LEFT(a, 30);
 761 
 762         W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);  /* 27 */
 763         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1);
 764         e = ROTATE_LEFT(e, 30);
 765 
 766         W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);  /* 28 */
 767         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1);
 768         d = ROTATE_LEFT(d, 30);
 769 
 770         W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 29 */
 771         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1);
 772         c = ROTATE_LEFT(c, 30);
 773 
 774         W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);  /* 30 */
 775         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1);
 776         b = ROTATE_LEFT(b, 30);
 777 
 778         W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);  /* 31 */
 779         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1);
 780         a = ROTATE_LEFT(a, 30);
 781 
 782         W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);            /* 32 */
 783         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1);
 784         e = ROTATE_LEFT(e, 30);
 785 
 786         W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);            /* 33 */
 787         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1);
 788         d = ROTATE_LEFT(d, 30);
 789 
 790         W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);   /* 34 */
 791         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1);
 792         c = ROTATE_LEFT(c, 30);
 793 
 794         W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);            /* 35 */
 795         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1);
 796         b = ROTATE_LEFT(b, 30);
 797 
 798         W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);            /* 36 */
 799         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1);
 800         a = ROTATE_LEFT(a, 30);
 801 
 802         W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);            /* 37 */
 803         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1);
 804         e = ROTATE_LEFT(e, 30);
 805 
 806         W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);            /* 38 */
 807         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1);
 808         d = ROTATE_LEFT(d, 30);
 809 
 810         W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);            /* 39 */
 811         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1);
 812         c = ROTATE_LEFT(c, 30);
 813 
 814         /* round 3 */
 815         W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);            /* 40 */
 816         e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2);
 817         b = ROTATE_LEFT(b, 30);
 818 
 819         W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);            /* 41 */
 820         d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2);
 821         a = ROTATE_LEFT(a, 30);
 822 
 823         W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);  /* 42 */
 824         c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2);
 825         e = ROTATE_LEFT(e, 30);
 826 
 827         W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);  /* 43 */
 828         b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2);
 829         d = ROTATE_LEFT(d, 30);
 830 
 831         W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);  /* 44 */
 832         a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2);
 833         c = ROTATE_LEFT(c, 30);
 834 
 835         W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 45 */
 836         e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2);
 837         b = ROTATE_LEFT(b, 30);
 838 
 839         W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);  /* 46 */
 840         d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2);
 841         a = ROTATE_LEFT(a, 30);
 842 
 843         W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);  /* 47 */
 844         c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2);
 845         e = ROTATE_LEFT(e, 30);
 846 
 847         W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);            /* 48 */
 848         b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2);
 849         d = ROTATE_LEFT(d, 30);
 850 
 851         W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);            /* 49 */
 852         a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2);
 853         c = ROTATE_LEFT(c, 30);
 854 
 855         W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);   /* 50 */
 856         e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2);
 857         b = ROTATE_LEFT(b, 30);
 858 
 859         W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);            /* 51 */
 860         d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2);
 861         a = ROTATE_LEFT(a, 30);
 862 
 863         W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);            /* 52 */
 864         c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2);
 865         e = ROTATE_LEFT(e, 30);
 866 
 867         W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);            /* 53 */
 868         b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2);
 869         d = ROTATE_LEFT(d, 30);
 870 
 871         W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);            /* 54 */
 872         a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2);
 873         c = ROTATE_LEFT(c, 30);
 874 
 875         W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);            /* 55 */
 876         e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2);
 877         b = ROTATE_LEFT(b, 30);
 878 
 879         W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);            /* 56 */
 880         d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2);
 881         a = ROTATE_LEFT(a, 30);
 882 
 883         W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);            /* 57 */
 884         c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2);
 885         e = ROTATE_LEFT(e, 30);
 886 
 887         W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);  /* 58 */
 888         b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2);
 889         d = ROTATE_LEFT(d, 30);
 890 
 891         W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);  /* 59 */
 892         a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2);
 893         c = ROTATE_LEFT(c, 30);
 894 
 895         /* round 4 */
 896         W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);  /* 60 */
 897         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3);
 898         b = ROTATE_LEFT(b, 30);
 899 
 900         W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 61 */
 901         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3);
 902         a = ROTATE_LEFT(a, 30);
 903 
 904         W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);  /* 62 */
 905         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3);
 906         e = ROTATE_LEFT(e, 30);
 907 
 908         W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);  /* 63 */
 909         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3);
 910         d = ROTATE_LEFT(d, 30);
 911 
 912         W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);            /* 64 */
 913         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3);
 914         c = ROTATE_LEFT(c, 30);
 915 
 916         W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);            /* 65 */
 917         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3);
 918         b = ROTATE_LEFT(b, 30);
 919 
 920         W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);   /* 66 */
 921         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3);
 922         a = ROTATE_LEFT(a, 30);
 923 
 924         W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);            /* 67 */
 925         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3);
 926         e = ROTATE_LEFT(e, 30);
 927 
 928         W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);            /* 68 */
 929         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3);
 930         d = ROTATE_LEFT(d, 30);
 931 
 932         W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);            /* 69 */
 933         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3);
 934         c = ROTATE_LEFT(c, 30);
 935 
 936         W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);            /* 70 */
 937         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3);
 938         b = ROTATE_LEFT(b, 30);
 939 
 940         W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);            /* 71 */
 941         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3);
 942         a = ROTATE_LEFT(a, 30);
 943 
 944         W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);            /* 72 */
 945         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3);
 946         e = ROTATE_LEFT(e, 30);
 947 
 948         W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);            /* 73 */
 949         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3);
 950         d = ROTATE_LEFT(d, 30);
 951 
 952         W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);  /* 74 */
 953         a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3);
 954         c = ROTATE_LEFT(c, 30);
 955 
 956         W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);  /* 75 */
 957         e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3);
 958         b = ROTATE_LEFT(b, 30);
 959 
 960         W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);  /* 76 */
 961         d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3);
 962         a = ROTATE_LEFT(a, 30);
 963 
 964         W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 77 */
 965         c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3);
 966         e = ROTATE_LEFT(e, 30);
 967 
 968         W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);  /* 78 */
 969         b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3);
 970         d = ROTATE_LEFT(d, 30);
 971 
 972         W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);  /* 79 */
 973 
 974         ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) +
 975             SHA1_CONST(3);
 976         ctx->state[1] += b;
 977         ctx->state[2] += ROTATE_LEFT(c, 30);
 978         ctx->state[3] += d;
 979         ctx->state[4] += e;
 980 
 981         /* zeroize sensitive information */
 982         W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0;
 983         W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0;
 984 }
 985 
 986 /*
 987  * Encode()
 988  *
 989  * purpose: to convert a list of numbers from little endian to big endian
 990  *   input: uint8_t *   : place to store the converted big endian numbers
 991  *          uint32_t *  : place to get numbers to convert from
 992  *          size_t      : the length of the input in bytes
 993  *  output: void
 994  */
 995 
 996 static void
 997 Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input,
 998     size_t len)
 999 {
1000         size_t          i, j;
1001 
1002 #if     defined(__sparc)
1003         if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
1004                 for (i = 0, j = 0; j < len; i++, j += 4) {
1005                         /* LINTED: pointer alignment */
1006                         *((uint32_t *)(output + j)) = input[i];
1007                 }
1008         } else {
1009 #endif  /* little endian -- will work on big endian, but slowly */
1010                 for (i = 0, j = 0; j < len; i++, j += 4) {
1011                         output[j]       = (input[i] >> 24) & 0xff;
1012                         output[j + 1]   = (input[i] >> 16) & 0xff;
1013                         output[j + 2]   = (input[i] >>  8) & 0xff;
1014                         output[j + 3]   = input[i] & 0xff;
1015                 }
1016 #if     defined(__sparc)
1017         }
1018 #endif
1019 }